

## Article Info

 Open Access

**Citation:** Al-Azab, A.M., Shaalan, E.A., 2018. Efficacy of Spinosad and Flubex against Dengue Fever Vector *Aedes aegypti* in Jeddah Governorate, Saudi Arabia. PSM Vet. Res., 3(2): 15-21.

**Received:** July 5, 2018

**Accepted:** August 8, 2018

**Online first:** August 26, 2018

**Published:** September 21, 2018

**\*Corresponding author:**

Abbas M. Al-Azab;  
**Email:**  
abbasazab2000@gmail.com

**Copyright:** © 2018 PSM. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License.

## Efficacy of Spinosad and Flubex against Dengue Fever Vector *Aedes aegypti* in Jeddah Governorate, Saudi Arabia

Abbas M. Al-Azab<sup>1</sup>, Essam A. Shaalan<sup>2</sup>

<sup>1</sup>Biological Science Department, Faculty of Science, Sana'a University, Yemen.

<sup>2</sup>Zoology Department, Faculty of Science, Aswan University, Egypt.

### Abstract

The biological effects of both spinosad (4.7%) and flubex (diflubenzuron DT 2%) against *Aedes aegypti* (*Ae. aegypti* (L.) mosquito larvae were assessed under laboratory conditions. The LC<sub>50</sub> values of the spinosad and diflubenzuron were 0.22 ppm and 0.0019 ppm respectively, against *Ae. aegypti* larvae. The mortality rate of mosquito larvae ranged from 35- 96 % and 2-20 % for those spinosad and diflubenzuron separately. The results revealed that the spinosad formulation was highly effective against larvae comparing with flubex. Larval treatment with the IGR diflubenzuron reduced the reproductive potential of adult mosquito that emerged from these treatments by 16-84%. These results revealed that although flubex is an IGR, its larvicidal activity is better than spinosad. Further assessments and field investigation on IGRs products as insecticides alternatives should be carried out for managing *Ae. aegypti* mosquitoes.

**Keywords:** Spinosad, flubex, *Aedes*, biological, larvicides.



Scan QR code to see this publication on your mobile device.

## INTRODUCTION

Mosquitoes are the most medically important insect species due to their capacity in carrying and transmitting both animal and human diseases (Khlak *et al.*, 2016; Snow *et al.*, 1999; Roth *et al.*, 2010; Weaver *et al.*, 2010). *Aedes aegypti* (L.) is widely spread throughout the world, including tropical and subtropical areas and it is recognized as the most important vector for transmitting serious diseases such as dengue, chikungunya and Zika viruses (Benelli, 2016 a,b).

In Saudi Arabia, the first dengue outbreak in over 50 years, was in Jeddah city in 1994 (Gubler, 2002). Since that time, dengue fever has emerged as a major public health problem in Jeddah city (WHO 2010) and dengue virus surveillance was established after that time (Fakih and Zaki, 2001). In 2006, dengue fever reported cases had risen drastically compared to the earlier recorded numbers (Aburas, 2007).

Due to extensive use of chemical insecticides for several decades to manage mosquito populations (Hemingway and Ranson, 2000), mosquitoes have developed resistance to these insecticides. Furthermore, health concerns have promoted research to find alternative insecticides for effective control of vector mosquitoes (Uragayala *et al.*, 2015). The key criteria for an effective mosquito larvicide is low mammalian toxicity, low impact on the environment, the broad spectrum of activity against all target species of mosquito and a long duration of effect that reducing application frequency. The researchers started to look for new insecticides having new modes of action to either prevent or reduce the impact of insecticide resistance to the previous generation of insecticides (Darriet and Corbel, 2006; Perez *et al.*, 2007 and WHO, 2012). Insect growth regulators (IGRs) appeared as alternatives to such chemical larvicides due to their low mammalian toxicity, biologically specific and environmentally safe and have been recommended for *Ae. aegypti* control (Thavara *et al.*, 2004; Silva *et al.*, 2009).

Spinosad DT is a naturally derived insecticide composed of a mixture of two metabolites (spinosins A and D) obtained by fermentation process employing the soil bacterium *Saccharopolyspora spinosad* (*Actinomycetales*). It is highly virulent by both contact and ingestion to several dipterous insect pests (Bacci L *et al.*, 2016; Prabhu *et al.*, 2011). Due to its lower mammalian toxicity and its environmental impact, lower persistence and lower toxicity to a number of predaceous insects, it has been approved to control mosquito larvae in drinking water (Tomlin, 2000; Williams *et al.*, 2003; WHO, 2010). Three formulations (granules, aqueous suspension concentrate and tablets) of spinosad have been evaluated by WHO (2007) for mosquito larvae control. It has been used as a larvicide at 0.25–0.5 mg/l active ingredient for controlling *Ae. aegypti* in drinking-water containers. Technical and formulated

spinosad has been evaluated against larvae of several important mosquito species under laboratory conditions. Both LC<sub>50</sub> and LC<sub>90</sub> technical material of the Spinosad against *Ae. aegypti* larvae ranged from 0.155 to 0.35 mg/L AI and 0.185 to 0.92 mg/L AI respectively (WHO ,2007). Another study was conducted against *Ae. aegypti*, *Anopheles gambiae*, and *Cx. quinquefasciatus* larvae with technical material dissolved in ethanol (Darriet *et al.*, 2005). Spinosad was found to be more active against larvae of *An. gambiae*, followed by *Cx. quinquefasciatus* and *Ae. aegypti*. The LC<sub>50</sub> and LC<sub>90</sub> values were: 0.01–0.032 mg/L AI (*An. gambiae*), 0.093–0.49 mg/L AI (*Cx. quinquefasciatus*) and 0.35– 0.92 mg/L AI (*Ae. aegypti*) respectively. A couple of formulations of spinosad, direct application tablet (DT) and 0.5% granules (GR), at 3 dosages (0.25, 0.5 and 1.0 mg/l) were evaluated against *Ae. aegypti* larvae (Thavara *et al.*, 2009). A percentage of 79-100 IE for 34 days was produced by The DT formulation at the highest concentration (1.0 mg/l) whilst after 62 days 90-100% IE was obtained. These results indicate a longer residual period of such formulation.

Flubex (Diflubenzuron 2%) is another GR mainly works through ingestion leading to inhibition of both synthesis and deposition of the chitin in the body wall of the treated immature stages of the insects that finally causing death (Sihuinchia *et al.*, 2005). The Cuticle of treated larvae is unable to withstand increased pressure during the ecdysis process and fail to provide adequate muscular support during molting. Such larvae are unable to throw their exuviae and finally die due to either starvation or rupture of the new, delicate, malformed cuticle. According to WHO PES recommendation (WHO, 2006), Diflubenzuron wettable powder has been used in mosquito larvae control since the mid-1970's.

Several studies have evaluated insect growth regulators (IGRs) for mosquito control in different regions of the world (Mulla *et al.*, 2003; Cetin *et al.*, 2006 ;Silva *et al.*, 2009 Jacups *et al.*, 2014; Anjum, *et al.*, 2017). In the present investigation, two nonconventional insecticides, diflubenzuron 2% DT and spinosad 7.48% DT, were used to control *Ae. aegypti* larvae based on recommendations made by WHO (2007,2009) for controlling the mosquito larvae.

## MATERIALS AND METHODS

### Mosquito Rearing

The mosquito *Ae.aegypti* (L.) was chosen an experimental insect for the present study, because it is considered as one of the most important biting and nuisance mosquitoes and the major vector for dengue fever in the study area. Larvae were obtained from the Municipality of Jeddah and were reared to produce a colony under laboratory conditions. The colony was maintained in insectary at room temperature (27± 1 °C),

relative humidity of 70±5% and 14:10 (L: D) controlled photoperiod. Larvae were fed on fish food and males were fed on 10% glucose sugars whilst females get their blood meals from domestic pigeons.

### Insecticides

Two commercial formulations of IGRs, flubex and spinosad, were used in larval bioassays. Flubex (diflubenzuron 2% DT) was obtained from Agricultural office-Jeddah, Saudi-Arabia and spinosad (7.48% DT.) was obtained from the Municipality of Jeddah. These insecticides were selected for larval bioassay due to their usage as larvicides to control the container - breeding *Ae. aegypti* in vector control programs in Jeddah city, Saudi Arabia.

### Larval bioassays

Bioassays were undertaken according to instructions of WHO (1981). A stock solution of both spinosad and diflubenzuron were obtained by grinding and dissolving the tablets in a suitable solvent. A stock solution of spinosad and diflubenzuron were prepared by dilution with distilled water and homogenized by shaking until completely dissolved, required concentrations were diluted immediately prior to use in bioassays.

The late third or early emerged fourth instar larvae of *Ae.aegypti* were selected for use in bioassays. Larvae were subjected to series of concentrations from Spinosad 7.48% DT (0.125-2 ppm) and flubex 2% (0.0004-0.008 ppm). Twenty five larvae were placed in 249 ml of de-chlorinated tap-water plus 1ml from the concentration of the insecticide in pyrex beakers. Each concentration has four replicates and control. Mortality was monitored at 24 hours intervals after initial exposure. Larvae that showed lack of movement in response to continued probing were considered dead. Larval and pupal mortalities were recorded daily whilst alive pupae were transferred to untreated water in new beakers and left until the emergence of the last mosquito. Both partially emerged mosquitoes and those found completely emerged but unable to leave the water surface were recorded and considered as dead adults.

### Statistical analysis

Results of bioassays were corrected by using Abbott's formula (Abbott, 1925) when control mortality exceeded 10% which never happened then subjected to probit analysis (Finney, 1952). Probit regression analysis programme was used to analyze mortality data to obtain

LC<sub>50</sub> and LC<sub>95</sub> of tested compounds. Statistical differences between LC<sub>50</sub> values were determined based on overlapping of 95% confidence intervals. The chi-square test was used to calculate the respective slope lines.

## RESULTS AND DISCUSSION

Two non-conventional insecticides (IGR) flubex 2% DT and spinosad 7.48% DT were evaluated against *Ae.aegypti* larvae. The cumulative mortalities of the development stage have been considered as a criterion for the evaluation of the IGRs due to their delayed action against such stages (WHO, 2005a). Larval and pupal mortality percentages as well as inhibition of adult emergence were shown in tables (1, 2) and figure (1).

As shown in the table (2) the mortalities of larvae treated with effective concentrations of diflubenzuron compound were very low and ranged from 2 to 20%. These results could be due to either the delayed or the cumulative effects of this compound on the developmental stages of mosquitoes. These results are in agreement with Georgiou and Lin (1974) who mentioned that we should not use larval mortality as indicator when we evaluating effects of these compounds against mosquito larvae due to their delayed or cumulative effects on mosquitoes developmental stages. Therefore IC<sub>50</sub> (Concentration that inhibits the emergence of 50% of mosquito) was used as the criterion rather than LC<sub>50</sub> (Concentration that kills 50% of mosquito larvae) in the present work. In contrary, spinosad was highly effective against the *Ae.aegypti* larvae and showed 35- 96 % mortality (Table 1), whereas the corresponding percentages of adult emergence inhibition were 16-84% for diflubenzuron. The IC<sub>50</sub> and IC<sub>90</sub> that prevented adults emergence from larvae treated with diflubenzuron were 0.0019 and 0.0022 ppm respectively.

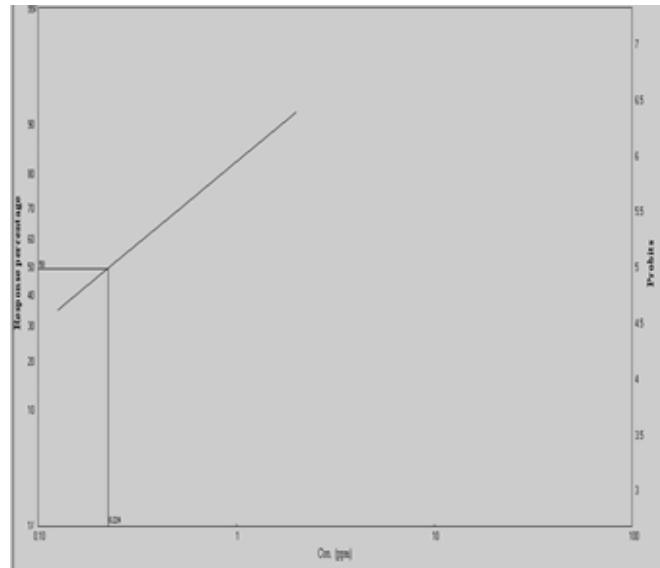

Results revealed that the spinosad formulation was highly effective against larvae (Table 1) with LC<sub>50</sub> = 0.22 ppm. However, diflubenzuron was more effective in inhabiting adult emergence. The present study indicated that diflubenzuron showed a significant effect in inhibiting adult emergence with higher mortality in the pupal stage (84%) and lower mortality in the larval stage (20%). Contrarily, Spinosad revealed high mortality percentage of larvae (96%) compared with diflubenzuron. Furthermore, pupal mortality and incomplete adult emergence were recorded.

Table 1. Larvicidal effects and statistical parameters of spinosad on *Ae. aegypti*.

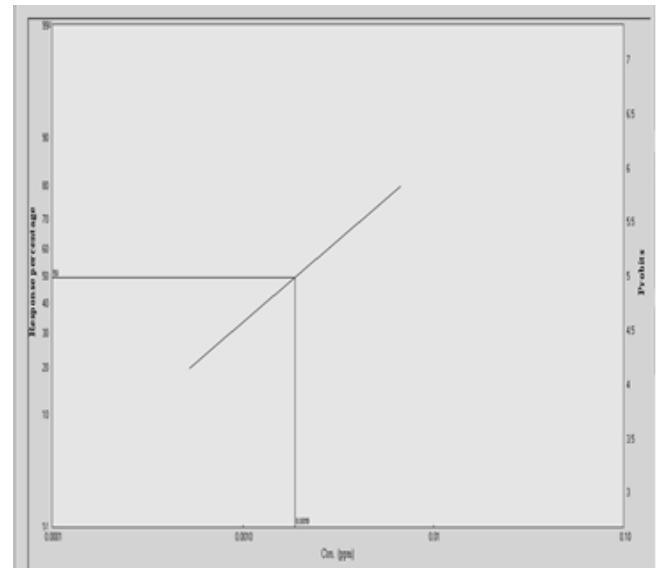

| Conc.(ppm) | Larval mortality % | Statistical parameters        | Larval stage |
|------------|--------------------|-------------------------------|--------------|
| 0.250      | 52                 | 95%(*F.L)                     | 0.172-0.276  |
| 0.500      | 70                 | LC 95 (ppm)                   | 2            |
| 1.000      | 86                 | 95%(*F.L)                     | 1.961-6.361  |
| 2.000      | 96                 | Slope                         | 1.47         |
|            |                    | Tabulated (Chi) <sup>2</sup>  | 7.8          |
| Control    | 0                  | Calculated (Chi) <sup>2</sup> | 1.24         |
|            |                    | R-Squared                     | 80.1%        |

 Table 2. Biological effects and statistical parameters of IGR diflubenzuron 2% on developmental stages of *Ae. aegypti*.

| Con.(ppm) | Larval Mortality (%) <sup>A</sup> | Pupa Produced | Adult%    |                             | Statistical parameters        | Adult Stage   |
|-----------|-----------------------------------|---------------|-----------|-----------------------------|-------------------------------|---------------|
|           |                                   |               | Emergence | Inhibition (%) <sup>B</sup> |                               |               |
| 0.0004    | 2                                 | 94            | 84        | 16                          | LC <sub>50</sub> (ppm)        | 0.0019        |
| 0.0008    | 11                                | 83            | 72        | 28                          | 95%(*F.L)                     | 0.0016-0.0023 |
| 0.002     | 17                                | 80            | 48        | 52                          | LC <sub>95</sub> (ppm)        | 0.022         |
| 0.005     | 15                                | 85            | 27        | 73                          | 95%(*F.L)                     | 0.0152-0.0397 |
| 0.008     | 20                                | 88            | 16        | 84                          | Slope                         | 1.51          |
| Control   | 2                                 | 95            | 93        | 7                           | Tabulated (Chi) <sup>2</sup>  | 7.8           |
|           |                                   |               |           |                             | Calculated (Chi) <sup>2</sup> | 0.18          |
|           |                                   |               |           |                             | R-Squared                     | 84.6%         |



(A)



(B)

 Fig.1. The relation between concentrations of spinosad 4.7% (A), diflubenzuron 2% (B) and mortality percentage of *Ae.aegypti* larvae.

Figure (2) showed morphological abnormalities (intermediate stages such as larval siphon, pupal trumpets) in developmental stages of *Ae. aegypti* resulted from treatment with diflubenzuron. Several previous studies (Bridges *et al.*, 1977 ; Kelada *et al.*, 2006 ;Thangaraj *et al.*, 1987 and Baruah and Dus,1996; Bond *et al.*, 2004; Khan *et al.*, 2016) are inconsistent with these findings. Mulla (1995) stated that these abnormalities affect the developmental stages leading to failure in successful adult emergence from pupal exuviae. Additionally, findings of the

present study are in agreement with findings of several studies conducted in different regions of the world (Romi *et al.* 2006;Thavara *et al.*, 2007 and 2009, Seccacini *et al.*, 2008; Jiang , Mulla, 2009; Kamal, H., Khater, E. 2010, and Suman *et al.*, 2010; Saleh *et al.*, 2013). The slight difference in the efficacy range of the compounds among these studies could be due to differences in mosquito strain, biological response of the tested larvae, compounds formulation and experimental conditions.



(A)



(B)

**Fig. 2. Abnormalities in the developmental stages of *Ae. aegypti* after treatment with Flubex 2%, (A) a larval-pupal intermediates. (B) Untreated larvae.**

## CONCLUSION

The study showed that both spinosad and flubex have high efficacy against the larval stage and adult emergence of *Ae.aegypti* mosquitoes.

## ACKNOWLEDGEMENT

The authors are highly thankful to Agricultural office-Jeddah, and the Municipality of Jeddah Saudi-Arabia for providing samples of flubex and spinosad insect growth regulators. The authors also thankful to editor and reviewers of this Journal for their valuable comments and suggestions to the improvement of this paper.

## CONFLICT OF INTEREST

The authors declare that no there is no conflict of interest for this study.

## REFERENCES

- Abbott, W.S., 1925. A method for computing the effectiveness of an insecticide. *J. Econ. Entomol.*, 18(2): 265-267.
- Aburas, H.M., 2007. ABURAS Index : A Statistically Developed Index for Dengue- Transmitting Vector Population Prediction . *PWASET*, 23 , pp. 151-154.
- Anjum, K.I., Hassan, S.A., Usman, M., 2017. Evaluation of bio-efficacy and residual activity of pyriproxyfen against field collected *Aedes aegypti* and *Aedes albopictus* from Gujranwala (Punjab), Pakistan. *Int. J. Entomol. Res.*, 3(2): 17-21
- Bacci, L., Lupi, D., Savoldelli, S., Rossaro, B., 2016. A review of spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. *J. Entomol. Acarol. Res.*, 48: 40-52.

Baruah, I., Dus, S., 1996. Evaluation of Mthoprene (Altosid) and Diflubenzuron (Dimilin) for control of mosquito breeding in Tezpur (Assam) India J. Malariol., 33(2): 6-66.

Benelli, G., 2016a. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res., 115: 23-34.

Benelli, G., 2016b. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asia Pacif. J. Trop. Biomed., 6: 353-354.

Bond, J.G., Marina, C.F., Williams, T. 2004. The naturally derived insecticide spinosad is highly toxic to *Aedes* and *Anopheles* mosquito larvae. Med Vet Entomol;18 : 50 - 56.

Bridges, A., Coke, J., Olson, J., Mayer, R., 1977. Effects of new fluorescent insect growth regulator on larval instars of *Aedes aegypti*. Journal of Mosquito News.37(2): 227-233.

Cetin H., Yanikoglu, A, Cilex, J.E., 2006. Efficacy of diflubenzuron, a 16 chitin synthesis inhibitor, against *Culex pipens* larvae in septic tank water. J. Am. Mosq. Control Assoc., 22: 343-5.

Darriet, F., Duchon, S., Hougard, J.M., 2005. Spinosad: a new larvicide against insecticide resistant mosquito larvae. J. Am. Mosq. Control Assoc., 21:495-496.

Darriet, F., Corbel, V., 2006. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against *Aedes aegypti* larvae. J. Med. Entomol., 43: 1190 – 1194.

Fakeeh, M., Zaki A.M., 2001. Virologic and serologic surveillance for dengue fever in Jeddah, Saudi Arabia , 1994 - 1999. Am. J. Trop. Med. Hyg., 65(6): pp.76 - 767.

Finney, D.J., 1952. Probit Analysis. 2nd ed. Cambridge: University Press.

Gubler, D.J., 2002. Epidemic dengue /dengue hemorrhagic fever as public health, social and economic problem in the 21<sup>st</sup> century. Trends Microbiol., 10: 100 – 103.

Georghiou, G.R., Lin, C.S., 1974. Time – sequence response *Culex tarsalis* following exposure to insect growth regulators. WHO/UBC/ Insect Genetic and Resistance 74: 27 - 31

Hemingway, J., Ranson, H., 2000. Insecticide Resistance in Insect Vectors of Human Disease. Ann. Rev. Entomol., 45: 371-391.

Ikhlak, U., Irfan, M., Ali, S., Ashraf, A., Xiao, S., Qayyum, M., 2016. Prevalence of Dengue in Students of Arid Agriculture University Rawalpindi. PSM Microbiol., 01(2): 62-65.

Jacups, S.P., Paton, C.J., Ritchie, S.A., 2014. Residual and pretreatment application of starcide insect growth regulator (triflumuron) to control *Aedes aegypti* in containers. Pest. Manag. Sci., 70(4): 572-575.

Jiang, Y., Mulla, M.S., 2009. Laboratory and field evaluations of spinosad, a biorational natural product, against larvae of *Culex*. J. Am. Mosq. Control Assoc., 25: 456 - 466.

Kamal, H., Khater, E., 2010. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito *Aedes aegypti*. J. Egypt. Soc. Parasitol., 40(3): pp 565 - 574

Kelada, H., Iwasaki, T., Loan, L., Tien, T., Mai, N., Shono, Y., Katayama, Y., Takagi, M., 2006. Field evaluation of special repellence of metaflutrin-impregnated latticework plastic strip against *Aedes aegypti* (L) and analysis of environmental factors affecting its efficacy J. Trop. Med. Hyg., 75(6): 1153-1157.

Khan, G.Z., Khan, I., Khan, I.A., Alamzeb, Salman, M., Ullah, K., 2016. Evaluation of different formulations of IGRs against *Aedes albopictus* and *Culex quinquefasciatus* Diptera: Culicidae. Asian Pac. J. Trop. Biomed., 6(6): 485-491

Mulla, M., 1995. The future of insect growth regulators in vector control. J. Am. Mosq. Control Assoc., 2: 260-273.

Mulla, M.S., Thavara, U., Tawatsi, A., Chompoosri, J., Zaim, M., SU, T., 2003. Laboratory and field evaluation of Novaluron a new acylurea insect growth regulator against *Aedes aegypti* (Diptera: culicidae). J. Vect. Ecol., 28: 2:241-54.

Perez, C.M., Marina, C.F., Bond, J.G., Rojas, J.C., Valle, J., Williams, T., 2007. Spinosad, a naturally derived insecticide, for control of *Aedes aegypti* (Diptera: Culicidae): efficacy, persistence and elicited oviposition response. J. Med. Entomol., 44 : 631 - 638.

Prabhu, K., Murugan, K., Nareshkumar, A., Bragadeeswaran, S., 2011. Larvicidal and pupicidal activity of spinosad against the malarial vector *Anopheles stephensi*. Asian Pac. J. Trop. Med., 4(8): 610-3

Romi, R., Proietti, S., Diluca, M., Cristofaro, M., 2006. Laboratory Evaluation of the Bioinsecticide Spinosad for Mosquito Control. J. Am. Mosq. Control Assoc., 22(1): 93 - 96.

Roth, D., Henry, B., Mak, S., Fraser, M., Taylor, M., Li, M., Cooper, K., Furnell, A., Wong, Q., Morshed, M., 2010. Members of the British Columbia West Nile Virus Surveillance Team. West Nile Virus Range Expansion into British Columbia. Emerg. Infect. Dis., 16, 1251-1258.

Saleh, M.S., Abuzinadah, O.A., Al-Gamdi, K.H., Alsagaf, A.A., Mahyoub, J.A., 2013. Effectiveness of slowrelease tablet formulations of the IGR diflubenzuron and the bioinsecticide Spinosad against larvae of *Aedes aegypti* (L.). Afr. Entomol., 21(2): 349-355.

Seccacini, E., Lucia, A., Harburger, L., Zerba, E., Licastro, S., Masuh, H., 2008. Effectiveness of pyriproxyfen and

diflubenzuron formulations as larvicides against *Aedes aegypti*. J. Am. Mosq. Control Assoc., 24(3): 398-403.

Sihuinch, M., Zamora-Perea, E., Orellana-Rios, W., Stancil J., Lopez-Sifuentes, V., 2005. Potential use of pyriproxyfen for control of *Aedes aegypti* (Diptera: Culicidae) in Iquitos, Peru. J. Med. Entomol., 42: 620-630

Silva, J., Mendes, J., Iomonaco, C., 2009. Effects of sublethal concentrations of diflubenzuron and methoprene on *Aedes aegypti* (Diptera: Culicidae) fitness. Int. J. Trop. Ins. Sci., 29:17-23.

Snow, R.W., Craig, M., Deichmann, U., Marsh, K., 1999. Estimating Mortality, Morbidity and Disability Due to Malaria among Africa's non-Pregnant Population. B. World Health Organ. 77, 624-640

Suman, D. S. , Parashar B. D., Shri, P., 2010. Effect of sublethal dose of diflubenzuron and azadirachtin on various life table attributes of *Culex quinquefasciatus* (Diptera : Culicidae ). J.Med. Entomol., (47)6: 996 – 1002 .

Thangaraj, T., Sampath , V., Vasuki, C., Jeyaraj, R., 1987. Effects of insect growth regulator (diflubenzuron) on the development of mosquito *Culex pipiens*. Compar. Physiol. Ecol., 12(2): 106-110.

Thavara, U., Tawatsin, A., Kong-ngamsuk, W., Mulla, M.S., 2004. Efficacy and longevity of a new formulation of temephos larvicide tested in village-scale trials against *Ae. aegypti* larvae in water-storage containers. J. Am. Mosq. Control Assoc., 20(2):176-82

Thavara, U., Tawatsin, A., Chansang, C., Asavadachanukorn, P., Zaim, M., Mulla, M., 2007. Simulated Field Evaluation of the Efficacy of two Formulations of Diflubenzuron a Chitin Synthesis Inhibitor Against Larvae of *Aedes aegypti* ( L. ) (Diptera: Culicidae ) in Water-storage Containers . Southeast Asian J. Trop Med Public Health ,Vol . 38. No. 2. pp. 269 - 275

Thavara, U., Tawatsin, A., Asavadachanukorn, P., Mulla, M. S., 2009. Field evaluation in Thailand of spinosad, a larvicide derived from *Saccharopolyspora spinosa* ( Actinomycetales ) against *Aedes aegypti* ( L. ) larvae. Southeast Asian J. Trop. Med. Public Health, 40: 235 - 242 .

Tomlin, C. D., 2000. The pesticide manual. 12th ed. London, United Kingdom : British Crop Protection Council.

Uragayala S, Verma, V., Natarajan, I., Sharma, E., Velamuri, P., Kamaraju R., 2015. Adulticidal & larvicidal efficacy of three neonicotinoids against insecticide susceptible & resistant mosquito strains. Indian J Med Res 142 ,pp 64-70.

Weaver, S.C., Reisen, W.K., 2010. Present and Future Arboviral Threats. Antivir. Res. 85, 328-345.

Williams,T., Valle, J., Vinuela, E., 2003. Is the naturally-derived insecticide spinosad® compatible with insect natural enemies? Bio Sci Tech, 13:459-475.

World Health Organization (WHO.), 1981a. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. Geneva:

World Health Organization (WHO.), 1997. Chemical methods for the control of vector and pests of public health importance. Geneva: WHO/CTD/WHO/PES/97.2.

World Health Organization (WHO.), 2005a. Specifications and evaluations for public health pesticides. Diflubenzuron.; Geneva, Switzerland, pp.27.

World Health Organization (WHO.), 2005b. Division of Communicable Disease Control, Newsletter, 6,7-8 (<http://www.emro.who.int/pdf/dcdnewsletter6.pdf>).

World Health Organization (WHO.), 2006. Report of the ninth WHO/PES working group meeting WHO/HQ review of: Dimilin GR and DT, Vectobac DT, Aqua K-Othrine, Aqua Reslin Super. Geneva, Switzerland; pp. 96.

World Health Organization (WHO.), 2007. Review of spinosad 0.5% GR and 12% SC. Report of the Tenth WHO/PES Working Group meeting. Document WHO / CDS / INTDIWHO/PES / 2007. Geneva , Switzerland : WHO

World Health Organization (WHO.), 2009. Dengue, Guidelines for Diagnosis, Treatment, Prevention and Control, New edition. A Joint Publication of WHO and the Special Program for TDR, Geneva

World Health Organization (WHO.), 2010. Spinosad DT in drinking water: use for vector control in drinking-water sources and containers. Geneva: World Health Organization; [Online] Available from: [http://www.who.int/water\\_sanitation\\_health/dwq/chemicals/spinosadbg](http://www.who.int/water_sanitation_health/dwq/chemicals/spinosadbg).

World Health Organization (WHO.), 2012. Global plan for insecticide resistance management in malaria vector. WHO Global Malaria Programme. WHO, Geneva.