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Abstract: 

Cave ecosystems constitute paradigmatic oligotrophic refugia where fungal 
mycobiomes manifest pronounced zonation along light-nutrient gradients. 
This inaugural systematic inventory documents cultivable microfungi from 
Zahzah Cave, Yemen—a hyper-arid karst system absent from 
speleomycological records. Across 30 rigorously sampled matrices (soil 
n=12, rock n=10, air n=8) spanning entrance-twilight-dark transects, 78 
morphotypes (33 genera) emerged, overwhelmingly dominated by 
Aspergillus (20 spp., 42%) and Penicillium (14 spp., 22%) consortia (>64% 
relative abundance across substrates). Microclimatic forcings—inward 
cooling (16.1→9.5°C), escalating lithic moisture (0→20.3%), and ventilation 
attenuation—drove substrate-specific guilds and diversity attrition: twilight 
soil apices (395×10³ CFU g⁻¹, S=46, H′=3.45, λ=0.11) versus dark minima 
(127×10³ CFU g⁻¹, S=31, H′=2.76); airborne Cladosporium hegemony (27-
29%, 246→99 CFU m⁻³); edaphic Trichoderma, lithobiontic 
Trichophyton/Isaria partitioning. Yemen's seminal integrated cave mycology 
baseline unveils hyper-arid dynamics—Eurotiales supremacy—divergent 
from temperate/mesic archetypes, catalyzing phylogenomic and 
extremozyme interrogation of substrate specialists. 
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INTRODUCTION 

Cave ecosystems embody extreme oligotrophic 

environments defined by perpetual darkness, 

consistently low temperatures (typically 10–

20°C), high humidity, and severe nutrient 

scarcity, which impose selective pressures 

driving microbial evolution toward metabolic 

efficiency and resilience (Alves et al., 2022; 

Kosznik-Kwaśnicka et al., 2022; Luis-Vargas et 

al., 2024; Barbosa et al., 2025). These 

conditions marked by minimal allochthonous 

inputs like sporadic guano deposits, drift organic 

matter or rare organic debris create a stable yet 

unforgiving habitat where energy capture 

depends on exploiting fleeting resources, 

favoring slow-growing, highly adaptable 

microorganisms capable of long-term dormancy 

and rapid opportunistic colonization, favoring 

fungi over bacteria (Simões et al., 2015; Tebo et 

al., 2015; De Paula et al., 2019; Barbosa, et al., 

2025).  

Fungi dominate these subterranean niches due 

to their hyphal growth morphology, which 

enables extensive exploration of insoluble 

substrates across vast surfaces, efficiently 

accessing dispersed carbon and nutrients in air, 

soil, and rock biofilms (Jiang et al., 2017). 

Hyphal networks penetrate microfractures and 

form symbiotic or competitive interactions within 

cave food webs, often comprising up to 80% of 

microbial biomass in aphotic zones where 

bacterial competition is limited by diffusion 

constraints (Bay et al., 2025). This prevalence 

reflects evolutionary adaptations to isolation, 

with spore dispersal via air currents sustaining 

populations across entrance, twilight, and dark 

zones (Kosznik-Kwaśnicka et al., 2022). 

Distinct zonation patterns emerge along light-

nutrient gradients: entrance zones host 

allochthonous species from surface influx, 

twilight areas support transitional colonists, and 

dark interiors favor obligate cavernicoles with 

enhanced stress tolerance (Barbosa et al., 2025) 

(Figure 1). Fungi orchestrate nutrient cycling by 

breaking down recalcitrant organic inputs, 

supporting detritivores like arthropods and 

influencing cave geochemistry through mineral 

interactions, thus maintaining ecosystem stability 

in Yemen's karstic caves (De Paula et al., 2019; 

Luis-Vargas et al., 2024). 

 

 

Fig. 1. Schematic representation of cave zones. 1.entrance zone, 2. twilight zone, 3. transition zone, 4.dark zone. 

Source: Kosznik-Kwa´snicka et al., 2022 (modified) Created with BioRender.com. 

 

This groundbreaking investigation launches 

Yemen's inaugural speleomycological odyssey 

into uncharted karst territory—where cultivable 

cave fungi remain terra incognita amid zero 

published records. Zahzah Cave emerged as the 

Yemeni’s first quantitative fungal baseline, 

systematically stratifying soil, rock, and air 

matrices across canonical entrance-twilight-dark 
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gradients to resolve substrate-specific guilds and 

zonation signatures absent from global 

databases. Thriving within hyper-arid crucibles 

of episodic dust deposition, pronounced surface-

subsurface thermal disequilibria, and negligible 

precipitation, this dust-fueled system manifests 

mycobiome dynamics fundamentally divergent 

from temperate and tropical cave paradigms. As 

Yemeni's foundational reference, Zahzah Cave 

established the critical platform for multilocus 

phylogenetics, extremozyme bioprospecting, 

and biogeographic modeling of arid-adapted 

subterranean consortia. 

 

MATERIALS AND METHODS 

Study area and sampling design 

Sampling transpired within Zahzah Cave (Al-

Jaief region, Amran Governorate, Yemen) during 

May 2024, a hyper-arid system-oriented 

northwest. Stratified along the principal axis into 

three canonical zones: entrance (phototrophic, 

direct allochthonous influx), twilight (penumbral 

transition), and dark (aphotic profundum) (Figure 

2), augmented by proximal outside-air (entrance) 

and distal inside-air (twilight-dark) benchmarks. 

 

Fig. 2. The Zahzah cave. A. the cave entrance; B. 

twilight zone; C. a small side opening; D. the cave 

rocks and E. the cave ceiling in the dark zone.  

Thirty rigorously stratified samples 

included: soil (n=12; 4 per zone), lithic 

biofilms (n=10; swabbed across entrance-

twilight-dark transects), and air (n=8; 4× outside, 

4× inside). Microclimatic gradients were 

quantified via LB-522 thermo-hygrometer (air 

T/RH), Testo 606-1 (lithic moisture), and Testo 

410-1 anemometer (ventilation velocity)—

capturing inward cooling, moisture escalation 

and airflow attenuation driving fungal zonation. 

Fungal isolation and enumeration  

Soil (10 g) samples were placed into 90 mL of 

sterile physiological saline (0.85% NaCl) and 

shaken for 30 min at room temperature before 

serial ten-fold dilutions (10⁻¹–10⁻⁴) were 

prepared. From each dilution, 0.1 mL was 

spread, in duplicate, onto Potato Dextrose Agar 

(PDA; 200 g potato infusion, 20 g dextrose, 15 g 

agar per liter, pH 5.6) supplemented with 

chloramphenicol (50 mg/L) to suppress bacteria. 

Rock-associated fungi were sampled by 

swabbing a defined wall area from all zones 

(e.g. 10 × 10 cm) with sterile cotton swabs 

pre-moistened in physiological saline; each 

swab was then straked on PDA plates. Airborne 

fungi were sampled using the settle-plate 

method by exposing PDA plates at ~1.0 m 

above the floor for 30 min at each outside-air 

and inside-air station, with three replicate plates 

per station. All plates were incubated at 25 ± 3 

°C in the dark for 5–7 days and examined daily 

for colony development; incubation was 

extended up to 10 days for slow-growing 

isolates; Colony-forming units (CFU) were 

counted on plates with 30–300 colonies and 

expressed as CFU/g (soil), CFU/cm² equivalent 

(rock swabs), or CFU/m³ (air). 

Fungal identification 

Isolates were purified by repeated subculture on 

PDA until single-morphotype colonies were 

obtained, then identified primarily using 

macro- and micro-morphological criteria. Colony 

colour, texture, exudate production, and radial 

growth were recorded after 7 days, and 

microscopic structures (conidiophores, phialides, 

conidia, sporangia) were examined from 
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lactophenol cotton blue mounts using a 

compound microscope. Identification was 

assigned using appropriate taxonomic guides 

and recent literature (Raper and Fennell 1965; 

Raper and Thom 1968; Zycha and Siepmann 

1969; Ellis, 1971; 1976; Arx, 1974; Gilman, 

1975; Raper and Fennel, 1977; Pitt, 1979; 1991; 

Domsch et al., 1980; Ramirez, 1982; Sivanesan, 

1984; Seifert and Samson, 1986; Moubasher, 

1993; Echevarría and Iqbal, 2021). When 

isolates could not be unambiguously assigned to 

a species based on morphology, they were 

retained at genus level and reported as, for 

example, Fusarium sp., Mucor sp., or 

Chrysosporium sp. 

 

RESULTS 

Microclimate 

Zahzah Cave showed expected single-entrance 

gradients: air temperature progressively declined 

from entrance to dark (16.1 to 9.5°C), wind 

speed weakened inward (1.2 to 0.4), and rock 

moisture increased (0 to 20.3%), despite low RH 

(38-45%) typical of arid karst systems (Table 1). 

 

Table 1. Microclimate conditions in the cave. 

Location of 
measurement 

Air Rocks 

Temperature C Relative humidity % Wind speed [m/s] Moisture content % 

Entrance zone 16.1 38% 1.2 0.0 

Twilight Zone 13.2 41% 0.7 19.2 

Dark Zone 9.5 45% 0.4 20.3 

 

Community Composition in the Cave 

Zahzah Cave mycobiomes manifested 

pronounced substrate- and zonation-specific 

structuring across 78 morphotypes (33 

genera): soil (62 spp., 24 genera), air (47 spp., 

16 genera), lithic biofilms (33 spp., 15 genera) 

spanning entrance (phototrophic influx), twilight 

(penumbral transition), dark (aphotic 

profundum), and proximal/distal air benchmarks 

(Table, 2). Eurotiales hegemony prevailed 

universally, Aspergillus (20 spp., 42%), 

Penicillium (14 spp., 22%), >64% relative 
abundance, with A. niger and P. chrysogenum 

omnipresent across gradients.  

Airborne consortia were A. longipes and 

Cladosporium-enriched (18% outside, 22% 

inside); edaphic exclusives (A. alliaceus, A. 

iizukae, Chaetomium sp., Curvularia sp., P. 

vulpinum, T. harzianum, T. viride, R. stolonifer) 

signified organic-specialist guilds; lithobiontic 

specialists (Isaria fumosorosea, Trichophyton 

sp., yeasts) partitioned to rock matrices. 

Interiorward habitat specialization intensified, 

crystallizing substrate guilds along light-nutrient 

attenuation vectors. 

 

 

Table 2. Microfungi isolated from the entrance, twilight and dark zones soil, outside and inside air and the rocks 
surfaces in the cave. 

Fungal species 
Soil Air Rocks 

(walls) Entrance zone Twilight zone Dark zone Outside Inside 

Absidia sp. +* + - - - - 
Acremonium sp. -* + - - - - 
Alternaria alternata + + - + + - 
A. longipes - - - + - - 
A. tenuissima + + - + - + 
Aspergillus alliaceus + - + - - - 
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A. bertholletiae - + - - + + 
A. candidas + - + + - - 
A. creber - - - + - + 
A. flavus + + + - + - 
A. fumigatus  + + + + - - 
A. iizukae  + - + - - - 
A. japanicus + - + - - + 
A. jensenii + - - + - - 
A. niger + + + + + + 
A. ochraceus - + + + - + 
A. parastiticus + + - - - + 
A. sesamicola - - - + + - 
A. sydowii + - + + - - 
A. tamarii - + + + - + 
A. terreus + + + - - + 
A. usts + - - + + + 
A. versicolor + - - + - + 
A. wentii 
Aspergillus sp. 

- 
- 

+ 
+ 

- 
- 

+ 
- 
- 

+ 
- 

Aureobasidium pullulans  + + + + - - 
Botrytis cinerea - - - + + - 
Chaetomium sp. + + + - - - 
Chrysosporium sp. - + - - - + 
Cladosporium bruhnei - - - + - - 
Cl. cladosporioides - - - + + - 
Cl. herbarum - - - + + - 
Clonostachys candelabra - + - + - + 
Cunninghamella echinulata + - - - - - 
C. elegans - + + - - - 
Curvularia sp. - + - - - - 
Embellisia abundans + + - - - - 
Epicoccum nigrum - - - + + - 
Fusarium graminearum + - + - + + 
F. oxysporum - - + + + - 
F. solani + - + - + + 
Fusarium sp.  + + + - + + 
Geoterichum candidum - + - - - + 
Humicola seminuda - - + - - - 
Isaria fumosorosea - - - - - + 
Lecanicillium psalliotae + + - - - + 
Mortierella sp. - + + - - + 
Mucor circinelloides + + - + - + 
M. hiemalis  + + + + + + 
M. luteus  + + - - - - 
Myceliophthora sp. - + - - - - 
Paecilomyces fumosoroseus - + - + - - 
Penicillium brevicompactum  - + + + - - 
P. chrysogenum  + + + + + + 
P. citrinum + - + + - - 
P. commune + + - + - - 
P. cyclopium + + + + - + 
P. expansum - - - + + - 
P. glabrum  - + - - + - 
P. purpurogenum - + - - - + 
P. spinulosum  - - + + + + 
P. swiecickii - - - + + - 
P. variabile - + - + - + 
P. viridicatum - + - + - + 
P. vulpinum 
Penicillium sp. 

+ 
+ 

+ 
- 

+ 
- 

- 
- 

- 
- 

- 
- 

Phoma herbarum  + + - - - - 
Rhizopus arrhizus - + - + - - 
R. stolonifer + + + - - - 

https://hgf10.vsb.cz/546/mikro/houby/LA-3.html
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Sarocladium terricola - - - + + - 
Simplicillium lamellicola - - - - - + 
Stachybotrys chartarum + + + + - + 
Talaromyces allahabadensis - - - + - - 
Trichoderma harzianum + + + - - - 
T. koningii + + - + - - 
T. viride - + + - - - 
Trichophyton sp. - - - - - + 
Yeast - - - - - + 
       
Σ genera/zone 24 16 15 
Σ species/zone 62 47 33 

       
Σ genera 33      
Σ species 78      

*“+” species present; “-” species absent. 

 

Substrate-Specific Diversity Patterns 

Soil Microfungi Diversity  

Soil fungal loads peaked dramatically in the 

twilight zone (395 × 10³ CFU g⁻¹, S=46), 

surpassing entrance (237 × 10³ CFU g⁻¹, S=38) 

and dark zone (127 × 10³ CFU g⁻¹, S=31) 

minima—quantifying >3-fold zonation gradient 

(H′=3.45 to 2.76). Aspergillus hegemony 

intensified interiorward: A. flavus (10% entrance, 

8% twilight) yielded to oligotrophic A. niger (11% 

dark), emblematic of progressive specialist 

partitioning along nutrient attenuation vectors 

(Table 3). 

 

Table 3. Total count and percentage of microfungi isolated from the entrance, twilight and dark zones soil of the 
cave (CFU/g). 

Fungal species 
Sampling location (TC (CFU/g) ×10

3
) 

Entrance Zone Twilight zone Dark zone 
TC  TC % TC  TC % TC  TC % 

Abasidia sp. 
Acremonium sp. 
Alternaria alternata 
A. tenuissima 
Aspergillus alliaceus 
A. bertholletiae 
A. candidas 
A. flavus 
A. fumigatus  
A. iizukae  
A. japanicus 
A. jensenii 
A. niger 
A. ochraceous 
A. parastiticus 
A. sydowii 
A. tamarii 
A. terreus 
A. usts 
A. versicolor 
A. wentii 
Aspergillus sp. 
Aureobasidium pullulans  
Chaetomium sp. 
Chrysosporium sp. 

10 
- 
2 
2 
2 
- 
1 

23 
17 
3 
3 
4 

11 
- 

15 
7 
- 
3 
5 
3 
- 
1 
2 
8 
- 

4 
- 
1 
1 
1 
- 
0 
10 
7 
1 
1 
2 
5 
- 
6 
3 
- 
1 
2 
1 
- 
0 
1 
3 
- 

2 
3 
2 
6 
- 
2 
- 

30 
26 
- 
- 

25 
4 
4 
8 
- 
9 
2 
- 
- 
3 
- 

28 
4 

10 

1 
1 
1 
2 
- 
1 
- 
8 
7 
- 
- 
6 
1 
1 
2 
- 
2 
1 
- 
- 
1 
- 
7 
1 
3 

- 
- 
- 
- 
3 
- 
2 
2 

10 
6 
5 
- 

14 
2 
- 
5 
3 
4 
- 
- 
- 
- 
1 
5 
- 

- 
- 
- 
- 
2 
- 
2 
2 
8 
5 
4 
- 

11 
2 
- 
4 
2 
3 
- 
- 
- 
- 
1 
4 
- 

https://hgf10.vsb.cz/546/mikro/houby/LA-3.html
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Clonostachys candelabra 
Cunninghamella echinulate 
C. elegans 
Curvularia sp. 
Embellisia abundans 
Fusarium graminearum 
F. oxysporum 
F. solani 
Fusarium sp.  
Geoterichum candidum 
Humicola seminuda 
Lecanicillium psalliotae 
Mortierella sp. 
Mucor circinelloides 
M. hiemalis  
M. luteus  
Myceliophthora sp. 
Paecilomyces fumosoroseus 
Penicillium brevicompactum 
P. chrysogenum  
P. citrinum 
P. commune 
P. cyclopium 
P. glabrum 
P. purpurogenum 
P. spinulosum 
P. variabile 
P. viridicatum 
P. vulpinum 
Penicillium sp. 
Phoma herbarum  
Rhizopus arrhizus 
R. stolonifer 
Stachybotrys chartarum 
Trichoderma harzianum 
T. koningii 
T. viride 

- 
4 
- 
- 
2 
3 
- 
3 

11 
- 
- 
3 
- 
6 
9 
8 
- 
- 
- 
6 
3 
9 
- 
- 
- 
- 
- 
- 

11 
1 
3 
- 
8 

10 
12 
3 
- 

- 
2 
- 
- 
1 
1 
- 
1 
5 
- 
- 
1 
- 
3 
4 
3 
- 
- 
- 
3 
1 
4 
- 
- 
- 
- 
- 
- 
5 
0 
1 
- 
3 
4 
5 
1 
- 

3 
- 

15 
15 
2 
- 
- 
- 

19 
2 
- 
1 

10 
2 

12 
9 
3 

14 
3 

14 
- 
5 

12 
3 

12 
- 
5 
6 

12 
- 
1 
3 

12 
12 
15 
2 
3 

1 
- 
4 
4 
1 
- 
- 
- 
5 
1 
- 
0 
3 
1 
3 
2 
1 
4 
1 
4 
- 
1 
3 
1 
3 
- 
1 
2 
3 
- 
0 
1 
3 
3 
4 
1 
1 

- 
- 
3 
- 
- 
3 
3 
2 
5 
- 
3 
- 
3 
- 
5 
- 
- 
- 
2 
1 
6 
- 
3 
- 
- 
3 
- 
- 
9 
- 
- 
- 
1 
9 
3 
- 
1 

- 
- 
2 
- 
- 
2 
2 
2 
4 
- 
2 
- 
2 
- 
4 
- 
- 
- 
2 
1 
5 
- 
2 
- 
- 
2 
- 
- 
7 
- 
- 
- 
1 
7 
2 
- 
1 

       
Σ Isolates/zone 237  395  127  

 

Air and rocks microfungi diversity  

Airborne fungal loads plummeted 60% 

interiorward (246 CFU m⁻³/41 spp. outside to 99 

CFU m⁻³/21 spp. inside), overwhelmingly 

dominated by Cladosporium spp. (9% outside, 

19% inside), quantifying rigorous ventilation 

filtering of allochthonous spore influx. Lithic 

biofilms averaged 127 CFU cm⁻² (33 spp.), 

sustaining Penicillium-Aspergillus hegemony 

augmented by oligotrophic specialists (Isaria 

fumosorosea, Trichophyton sp., yeasts), 

emblematic of moisture-mediated rock 

colonization (Table 4). 

 

 

Table 4. Total count and percentage of microfungi isolated from outside and inside air and rock surface samples of 
the cave (CFU/m

3
) and (CFU/cm

2
), respectively. 

Fungal species 

TC (CFU/m
3
) TC (CFU/cm

2
) 

Air Rock surface 
 (walls) Outside Inside 

TC  TC % TC  TC % TC  TC % 

Alternaria alternata 
A. longipes 

21 
2 

9 
1 

3 
- 

3 
- 

- 
- 

- 
- 
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A. tenuissima 
A. bertholletiae 
A. candidas 
A. creber 
A. flavus 
A. fumigatus 
A. japanicus  
A. jensenii 
A. niger 
A. ochraceous 
A. parastiticus 
A. sesamicola 
A. sydowii 
A. tamarii 
A. terreus 
A. usts 
A. versicolor 
A. wentii 
Aureobasidium pullulans  
Botrytis cinerea 
Chrysosporium sp. 
Cladosporium bruhnei 
Cl. Cladosporioides 
Cl. herbarum 
Clonostachys candelabra 
Epicoccum nigrum 
Fusarium graminearum 
F. oxysporum 
F. solani 
Fusarium sp.  
Geoterichum candidum 
Isaria fumosorosea 
Lecanicillium psalliotae 
Mortierella sp. 
Mucor circinelloides 
M. hiemalis  
Paecilomyces fumosoroseus 
Penicillium brevicompactum 
P. chrysogenum  
P. citrinum 
P. commune 
P. cyclopium 
P. expansum 
P. glabrum 
P. purpurogenum 
P. spinulosum 
P. swiecickii 
P. variabile 
P. viridicatum 
Rhizopus arrhizus 
Sarocladium terricola 
Simplicillium lamellicola 
Stachybotrys chartarum 
Talaromyces allahabadensis 
Trichoderma koningii 
Trichophyton sp. 
Yeast 

8 
- 
5 
3 
- 

12 
- 
2 

10 
3 
- 
2 
2 
1 
- 

10 
4 
2 
3 
2 
- 
5 

22 
16 
7 
6 
- 
3 
- 
- 
- 
- 
- 
- 
3 
6 
4 
5 

13 
5 
4 
3 
4 
- 
- 

10 
6 
9 
2 
5 
6 
- 
6 
2 
2 
- 
- 

3 
- 
2 
1 
- 
5 
- 
1 
4 
1 
- 
1 
1 
0 
- 
4 
2 
1 
1 
1 
- 
2 
9 
7 
3 
2 
- 
1 
- 
- 
- 
- 
- 
- 
1 
2 
2 
2 
5 
2 
2 
1 
2 
- 
- 
4 
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Richness, Diversity & Dominance 

Zahzah Cave mycobiomes exhibited 

pronounced diversity gradients across 

substrates, peaking in twilight-zone soil (S=46, 

H′=3.45, 365 isolates) and outside air (S=41), 

intermediate in entrance/dark soils and lithic 

biofilms (S=31–38), and nadir in inside air 

(S=21, H′=2.18, 99 isolates)—crystallizing 

classic single-entrance zonation (Table 5). 

Twilight soil epitomized diversity apices: 

maximal richness, equitability (λ=0.11), and 

abundance, signifying transitional nutrient/light 

convergence fostering expansive, evenly 

distributed assemblages. Conversely, inside air 

manifested dominance consolidation (λ=0.37) 

among sparse, resilient airborne taxa, 

emblematic of rigorous environmental filtering. 

Rock surfaces and dark-zone soils sustained 

moderate richness/diversity despite isolate 

paucity, reflecting oligotrophic specialist guilds 

with compositional evenness adapted to 

profundal cave rigors (Figures 3 and 4).  

 

 

Table 5. Microfungi species richness, diversity and dominance in each cave site. 

Location Total isolates ↓ Richness ↓ 
Shannon Index 

(H′, ln) ↑ 
Dominance (λ) ↓ 

Diversity ↑ 
Notes 

Soil (twilight) 365 46 3.45 0.11 diversity peak 
Air (outside) 246 41 3.28 0.14 surface influx 
Soil (entrance) 237 38 3.12 0.16 allochthonous input 
Rocks 127 33 2.89 0.21 specialized 
Soil (dark) 127 31 2.76 0.24 oligotrophs 
Air (inside) 99 21 2.18 0.37 filtered 

 

 
Fig. 3. Relative abundance of microfungal genera in Zahzah Cave. a. all samples; b. soil samples; c. air samples and 

d. cave walls (rock surface) samples. 
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Fig. 4. The diversity of genera isolated from Zahzah Cave in different substrates. 
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DISCUSSION 

Zahzah Cave's microclimatic gradients,inward 

cooling (16.1 to 9.5°C), escalating relative 

humidity, ventilation attenuation, and lithic 

moisture escalation (0 to 20.3%), precisely 

recapitulate canonical single-entrance cave 

dynamics documented globally. Entrance air 

temperatures track external fluctuations with 

diminished amplitude, stabilizing interiorward 

toward mean annual surface isotherms, 

mirroring temperate/tropical paradigms (Medina 

et al., 2023). Relative humidity surges to near-

saturation in profundal zones via wall/sediment 

evaporation, contrasting entrance desiccation 

and airflow exchange; air velocity plummets, 

fostering stasis (Zelinka, 2002; Pflitsch and 

Piasecki, 2003; D’Agostino et al., 2015). Dry 

photic lithics yield to condensation-corroded, 

capillary-sustained inner walls, nucleating 

microbial/fungal biofilms under cool, saturated 

equilibria (Piano et al., 2015). Overall, Zahzah's 

data align with classic cave zonation models, 

promoting distinct communities in the humid, 

persistent-moisture interior versus the entrance 

zone. 

Community Composition in the Cave 

Zahzah Cave's fungal mycobiome manifested 

unequivocal zonation along microclimatic and 

substrate gradients, recapitulating global cave 

paradigms while inaugurating Yemen's inaugural 

comprehensive inventory; 78 morphotypes (33 

genera): soil (62 spp.), air (47 spp.), lithics (33 

spp.), filling a critical void in global arid 

speleomycology (Jiang et al., 2017; Nováková et 

al., 2018; Alves et al., 2022; Lima et al., 2024; 

Poli et al., 2024; dos Prazeres et al., 2025). 

Edaphic matrices reservoir maximal richness as 

primary diversity sinks; aerial/lithic interfaces 

mediate dispersal/colonization. Ascomycota 

anamorphs, Eurotiales hegemony 

(Aspergillus 20 spp., Penicillium 14 spp.; >64%), 

prevailed alongside Fusarium, Alternaria, 

Cladosporium, Mucor, Trichoderma, mirroring 

Italian/Brazilian/Spanish cave meta-patterns 

(Alves et al., 2022; Cunha et al., 2020; 

Dominguez-Moñino et al., 2021; Poli et al., 

2024). A. niger and P. chrysogenum exhibited 

pan-zonal, cross-substrate ubiquity, epitomizing 

oligotolerant generalism: exploiting eutrophic 

entrance alluvia to profundal nutrient refugia 

consistent with their stress-resilient profiles in 

tropical/temperate aerobiology, edaphons, and 

guano consortia (Lima et al., 2024; Burazerović 

et al., 2025).  

Substrate-Specific Diversity Patterns 

Soil Microfungi Diversity 

Aspergillus flavus and A. fumigatus dominated 

entrance/twilight soils, while A. niger prevailed in 

the dark zone, establishing a resilient core 

Aspergillus assemblage spanning light-nutrient 

gradients (Hsu and Agoramoorthy, 2001; Visagie 

et al., 2021). Twilight peaks in isolate density 

and species richness plummeted interiorward 

(>70% decline) under stringent environmental 

filtering and dwindling organic inputs, selectively 

enriching oligotrophic specialists like A. niger, P. 

vulpinum, and S. chartarum (Cunha et al., 2020; 

Poli et al., 2024). Persistent Aspergillus–

Penicillium hegemony across all zones—

bolstered by twilight satellites (P. fumosoroseus) 

and dark-zone endemics (A. iizukae, P. 

citrinum)—exemplifies classic generalist-to-

specialist zonation, paralleling Eurotiales-

dominated cave mycobiomes worldwide (Cunha 

et al., 2020; Visagie et al., 2021). Similarly, soil-

exclusive taxa (A. alliaceus, A. iizukae, 

Chaetomium sp., Curvularia sp., P. vulpinum, 

Trichoderma spp., R. stolonifer) formed distinct 

organic-specialist guilds, thriving in enzyme-rich 

microhabitats fueled by particulates, debris, and 

guano (Cunha et al., 2020).  

Air Microfungi Diversity 

C. cladosporioides dominated airborne 

assemblages at entrance and interior zones, 

underscoring its prolific spore production and 

profound adaptation to cave aerobiology. A. 

alternata (9% outside air) traced primarily to 

exogenous surface vegetation, exhibiting 

negligible persistence interiorward (Docampo et 

al., 2011). Endogenous taxa, C. herbarum, 

Fusarium sp. and P. chrysogenum (~10% each) 

persisted through chronic resuspension from soil 
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reservoirs, guano accumulations, and biofilm 

matrices, recapitulating the 

archetypal Penicillium-Cladosporium hegemony 

observed in Nerja and Heshang caves (Ogórek 

et al., 2014; Zhang et al., 2015). Aerial 

propagule guild including A. longipes, B. 

cinerea, C. cladosporioides, C. herbarum, P. 

expansum, P. swiecickii, S. terricola and T. 

allahabadensis manifested exclusively as 

allochthonous incursions, devoid of 

lithic/sedimentary colonization and emblematic 

of cosmopolitan show cave and wild karst 

mycobiomes (Pflitsch and Piasecki, 2003; 

Medina et al., 2023). Airborne density/richness 

plunged 60% (246 CFU/m³/41 spp. to 99 

CFU/m³/21 spp.) interiorward, exemplifying 

rigorous ventilation-mediated filtering of surface-

derived spores (interior), illustrating ventilation 

filtering of surface spores (Pflitsch and Piasecki, 

2003; De Freitas and Schmekal, 2003; Docampo 

et al., 2011). 

Rocks Microfungi Diversity 

Zahzah Cave walls sustained a stratified 

mycobiota, overwhelmingly dominated by P. 

chrysogenum (17% CFU/cm²), emblematic of its 

prodigious sporulation, robust mineral adhesion, 

and resilience to moisture/nutrient disequilibria 

quintessential of lithobiontic pioneers (Jurado et 

al., 2010; Visagie et al., 2014; Zhang et al., 

2015). Intermediate opportunists (A. tenuissima, 

A. japanicus, A. ochraceus, A. ustus, F. 

graminearum, F. solani, P. variabile) colonized 

discrete micro-niches—microcracks, 

hygroscopic salt efflorescences, and organic 

particulates—forming patchy lithic biofilms 

(Ogórek et al., 2014), Rare taxa (Isaria 

fumosorosea, Trichophyton sp., yeasts; 1-2%) 

exploited ephemeral niches via arthropod 

necromass, keratinic detritus, and condensed 

water films, mirroring 

entomopathogenic/keratinophilic guilds 

documented in bat guano-rich and quartzite 

karsts globally (Wasti et al., 2021; Lima et al., 

2024; Burazerović et al., 2025). 

 

 

Richness, Diversity & Dominance 

Twilight soil and entrance air constituted 

unequivocal diversity pinnacles—elevated 

richness, maximal H′ (3.45), minimal λ (0.11)—

with equitably distributed assemblages  (Adetutu 

et al., 2011); Interior air exhibited stark H′ 

attrition (2.18) via dominance consolidation 

(λ=0.37) among resilient taxa, recapitulating 

aerobiological paradigms wherein distal cave air 

filters entrance spore pools to cave-adapted 

subsets (Docampo et al., 2011; Ogórek et al., 

2014); Rock surfaces and dark-zone soils 

harbored moderate, oligotrophic Eurotiomycetes 

consortia, aligning with global meta-analyses 

documenting substrate-mediated filtering in lithic 

and profundal cave matrices (Jurado et al., 

2010; Burazerović et al., 2025). Wall mycobiota 

imposed stringent Penicillium-Aspergillus 

hegemony amid transient specialists, 

crystallizing cave-specific zonation orchestrated 

by light/nutrient/substrate gradients—

cosmopolitan generalists yielding to partitioned 

guilds (Poli et al., 2024). 

This pioneering investigation unveils Yemen's 

subterranean fungal frontier—the inaugural 

systematic survey of cultivable cave mycobiota 

within a speleomycologically pristine Arabian 

landscape devoid of prior records. Zahzah Cave 

establishes the quantitative gold standard, 

rigorously delineating 78 morphotypes across 

soil, rock, and air matrices through exhaustive 

entrance-twilight-dark transects, unmasking 

substrate-specific guilds and unprecedented 

diversity apices (H′=3.45, twilight soil) in hyper-

arid karst. Thriving under extreme desiccation—

episodic dust incursions, thermal gradients 

(16.1–9.5°C), and ephemeral inflows—this forge 

sculpts mycobiomes radically divergent from 

temperate/tropical archetypes, dominated by 

Eurotiales (64%) mastery of oligotrophy. South 

Arabia's seminal speleomycological atlas, 

Zahzah galvanizes forthcoming multilocus 

phylogenomics, extremozyme bioprospecting, 

and biogeographic insights from Yemen's veiled 

karst repositories. 
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CONCLUSION 

Zahzah Cave sustains a stratified fungal 

mycobiome (78 morphotypes, 33 genera) 

manifesting archetypal single-entrance zonation: 

twilight soil diversity apices (S=46, H′=3.45, 

λ=0.11), airborne Cladosporium hegemony, 

edaphic Trichoderma guilds, and lithobiontic 

Isaria fumosorosea, orchestrated by 

microclimatic gradients (16.1–9.5°C), episodic 

dust pulses, and substrate-mediated filtering. 

This inaugural integrated (soil/rock/air) inventory 

from Yemeni karst establishes a rigorous 

quantitative baseline, illuminating hyper-arid 

mycobiome dynamics—Eurotiales supremacy 

(64% relative abundance)—fundamentally 

divergent from temperate/mesic paradigms. 

Prospective multilocus phylogenomics of 

substrate specialists, coupled with extremozyme 

assays of dominant Eurotiales, will interrogate 

regional endemism and biotechnological 

valorization within climate-resilient subterranean 

refugia. 
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