

 Open AccessArticle Information**Received:** November 19, 2024**Accepted:** November 26, 2024**Published:** November 30, 2024Keywords

Preterm birth,
Neonatal morbidity,
Extremely premature infants,
Respiratory distress syndrome,
Neonatal care innovations.

Authors' Contribution

AJA conceived and designed the study; AJA and MAA wrote the first draft of the manuscript; DMA, AMA and AMA revised the manuscript, and AJA approved the final manuscript.

How to cite

Alkhatib, A.J., Al-Shehabat, M.A., Al-Shehabat, D.M., Al-Shehabat, A.M., Al-Shehabat, A.M., 2024. Preterm Birth Complications: Improving Outcomes for Extremely Premature Infants. PSM Microbiol., 9(3): 62-73.

*Correspondence**Ahed J Alkhatib****Email:** ajalkhatib@just.edu.joPossible submissions [Submit your article](#)

Preterm Birth Complications: Improving Outcomes for Extremely Premature Infants

Ahed J Alkhatib^{1,2,3*}, **Mustafa Ahmad Al-Shehabat**⁴, **Dania Mustafa Al-Shehabat**⁵, **Aya Mustafa Al-Shehabat**⁶, **Adam Mustafa Al-Shehabat**⁶

¹Department of Legal Medicine, Toxicology and Forensic Medicine, Jordan University of Science & Technology, Jordan.

²International Mariinskaya Academy, department of medicine and critical care, department of philosophy, Academician secretary of department of Sociology.

³Cypress International Institute University, Texas, USA.

⁴Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Jordan.

⁵King Abdulla University Hospital, Jordan.

⁶Faculty of Medicine, Jordan University of Science & Technology, Jordan.

Abstract:

Preterm birth, which is birth before 37 weeks, is one of the leading causes of morbidity and mortality among neonates. This entails complicated medical, technical, and socioeconomic problems. The serious complication rates of infants born at extremely preterm gestation age (<28 weeks) are higher than the complication rates of late preterm or term infants. This paper discusses the classification, epidemiology, complications, and management of preterm birth, especially of extremely premature babies. Newborn cures and rising scientific development have demonstrated fantastic development in existence as well as long-term outcomes. Nonetheless, preterm birth remains a worldwide health issue that varies in incidence across the globe due to the differential levels of socioeconomic development. Immediate problems include pneumonia, drinking troubles, and serious infection, all while long-term troubles often involve brain trouble and long-lasting trouble. The manuscript calls for necessary interventions and enhanced clinical care and policy reforms on the burden of preterm birth, particularly in low-resource settings. By using evidence-based practices and new technologies, neonatal care will contribute to increasing the chances for better outcomes and quality of life for sick babies and their families.

Scan QR code to visit
this journal.

©2024 PSM Journals. This work at PSM Microbiology; ISSN (Online): 2518-3834, is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-Non-commercial 4.0 International (CC BY-NC 4.0) licence. To view a copy of this licence, visit <https://creativecommons.org/licenses/by-nc/4.0/>.

INTRODUCTION

Preterm birth is a major contributor to neonatal health and is characterized by increased medical and technical challenges associated with earlier gestational ages (Morgan *et al.*, 2022). Although late-preterm birth is the most frequent gestational age, the consequences of late-preterm birth are possibly inconspicuous (Davidesko *et al.*, 2020). In contrast, extremely premature infants less than 28 weeks of gestation are clearly at greater risk (Mitha *et al.*, 2021). As research identifies optimal strategies for improving the outcomes for infants born at the border of viability, it is important to understand the nature of the risks that these newborns face and the interventions used to decrease their complications (Mactier *et al.*, 2020).

Preterm birth is defined as birth before 37 weeks gestation (Zhu *et al.*, 2021). Subdivisions of preterm birth are classified as moderate/late-preterm birth; very preterm birth; and extremely preterm birth (Siffel *et al.*, 2022). Substantial epidemiologic trends in the gestational age at delivery are taking place (Boel *et al.*, 2020). Infants born extremely preterm have a greater likelihood of major morbidities than those born very and/or moderate/late preterm (Bell *et al.*, 2022). Approximately 1.6 million deaths in 2012 were attributable to complications of preterm birth (Nourkami-Tutdibi *et al.*, 2021). Stronger global data and research should expose the prevalence of preterm birth complications in addition to possible management strategies at lower gestational ages for low- and middle-income countries (Lincetto and Banerjee, 2020). Human infants are born 'at the edge of viability' in all countries and at every level of cost and capacity (Greenbury *et al.*, 2021).

Definition of Preterm Birth

Preterm birth is defined as birth that occurs before 37 weeks of gestation (Cheong *et al.*, 2020). A more specified classification adds categories of delivery occurring at 32 0/7, especially for pregnancies that may benefit from

antenatal corticosteroids, and between 34+0/7 and 36+6/7 weeks of gestation (the "late preterm" period) (Ohuma *et al.*, 2023). There are also subcategories of extremely, very, and moderate preterm birth used to distinguish between preterm births at varying gestational ages with these designations (Koullali *et al.*, 2020). Since survival outcomes vary widely and require different levels of preventive obstetric care and neonatal intensive care, extremely preterm birth is typically defined as birth before 28 weeks, that is, 27+6/7 weeks, of gestation (Doyle *et al.*, 2021).

In addition to the risk of adverse outcomes and neurodevelopmental deficits, a complicated preterm birth may affect the immediate, acute, and infant and juvenile health of the neonate (Sullivan and Cummings, 2022). As such, perivable (22+0/7-25+6/7 weeks) and extremely preterm (22+0/7-27+6/7) are milestones in obstetrics and provide guidelines as to when ongoing pregnancy should be attempted if maternal interests align with infant survival (Seasely *et al.*, 2024). The decision to actively manage the labor of a healthy pregnant patient at these gestational ages while exploring and demonstrating the risks and benefits is an important area of ongoing research (Sullivan *et al.*, 2022). Nursing staff needs to have a clear understanding of gestational age classifications, perivable versus extremely preterm, and outcome variability (Ireland *et al.*, 2021).

Epidemiology of Preterm Birth

Prevalence estimates for preterm birth range from about 2.1% to 3.0% in the Czech Republic to about 18.1% in Malawi among low-income countries (Chersich *et al.*, 2020). The current global rate of preterm birth has increased by 8% in less than a decade, and future trends might shift the rate up to 11% by 2025 (Quenby *et al.*, 2021). The absolute number of preterm births is projected to continue rising (Perin *et al.*, 2022). The profound public health and societal implications of preterm birth have piqued the interest of many researchers and the general public (Betran *et al.*, 2021). The causes of

preterm birth are intrinsic as well as extrinsic to women worldwide, as preterm births affect all socioeconomic strata and ethnic groups (Been *et al.*, 2020). A major contributor to the global preterm birth burden is excluded, uninsured, underinsured, illegal immigrants of childbearing age and their offspring (Ugai *et al.*, 2022). A considerable number of women in several of the populations most tested in the world have no health coverage. Unfettered in the realms of maternal health, access to prenatal care is a reliable determinant of preterm birth rates in both pregnant adolescents and women (Hug *et al.*, 2021).

Variability in preterm birth rates among different populations and different geographical areas can stem from the level of socioeconomic development (Deng *et al.*, 2021). Therefore, apparent differences in preterm birth rates have led researchers to interpret the incidence of preterm birth in different countries as being driven by differences in such occurrences in single pregnancies, and they argued that the data should be interpreted with caution (Menon *et al.*, 2020). Factors including the preterm birth incidence by population and last menstrual period dating reference are possibly the most unfair within-population variation due to biases in population and gestational length (Cao *et al.*, 2022). Almost identical Irish data were interpreted as representing differences in pregnancy dating: for the population-based incidence of single fetuses, the relative difference between last menstrual period, clinical, and ultrasound dating was significant (Roman *et al.*, 2020). The differences between the self-reported and the clinically recorded gestational age at delivery were not narrowed down (Joo *et al.*, 2021). Based on gestational age distribution, they estimate a preterm birth rate reduced the nationwide rate in Europe within a few countries to two pregnancies in Europe due to registries closer to the stated prevalence (Egesa *et al.*, 2020). Despite the fact that others declared that ultrasound dating has an unquestionably lower preterm birth rate than last menstrual period dating, a lack of other data indicated that the series rate of preterm birth in

the case of other articles was still lower than the rate of more gestations (Mekuriyaw *et al.*, 2020). Increases in multiple gestation pregnancies are a major cause of increased preterm birth and low birth weight worldwide and increases in the late 20th century (Abadiga *et al.*, 2021).

Preterm birth is the primary determinant of the degree of morbidity and mortality of the newborn, and a significant amount of the clinical data on preterm labor centers on very immature infants (Egesa *et al.*, 2020). The rapid decline in mortality among mid-preterms and late-preterms has been made possible through dramatic advances in obstetric and neonatal care, as early as mid-pregnancy and pre-pregnancy (Kannaujiya *et al.*, 2022). There is support for the measurement of interventions from these mortality data to evaluate intervention thresholds (Jana *et al.*, 2022). The degree of immaturity has direct implications for the provision of care to the preterm newborn and is therefore of critical importance (Abebaw *et al.*, 2021).

Complications of Preterm Birth

Each year, over half a million births occur in the United States, with more than 10% involving premature deliveries (Kvalvik *et al.*, 2020). Complications of preterm birth remain a significant cause of morbidity and mortality (Crump, 2020). These complications are often related to or result in chronic health issues during growth and development and may require frequent and lasting medical care (Pusdekar *et al.*, 2020). Extreme normal growth and development continue post-term and during infancy. Thus, complications from preterm birth predominantly have immediate and long-term effects on the developing infant (Trickett *et al.*, 2020). The complications from preterm birth can be divided into those that result from the immediate effects of prematurity and those that result from complications of being born preterm (Pusdekar *et al.*, 2020).

The complications related to the immediate effects of being born too soon typically affect the infant's ability to breathe and gain weight. These complications may be temporary or permanent

and vary in severity (Trickett *et al.*, 2020). In terms of long-term complications resulting from the stress of being born too soon, the most prominent is related to neurodevelopment (Schnider *et al.*, 2020). Survivors of extremely preterm birth frequently suffer from cognitive, emotional, and behavioral disabilities, in addition to special educational needs and psychiatric illnesses that last into adulthood (Perez *et al.*, 2020).

Premature delivery associated with specific medical risks, such as exposure to an infection and difficulty feeding, often requires a longer hospital stay. Premature infants require care to decrease the likelihood of severe infection (Benestad *et al.*, 2022). Additionally, these infants frequently require oxygen and may need surfactant to prevent lung damage (Brunson *et al.*, 2021). Feeding premature infants is challenging, and slow growth is often a reflection of poor nutrition as well as organ immaturity (Youn *et al.*, 2021). Though every parent loves their new infant, many mothers describe emotional responses such as sadness or feelings of disappointment and failure and will request to hold the infant to bond and increase milk production despite the absence of reliable evidence that kangaroo care improves breastfeeding success (Singer *et al.*, 2021). Infant complications related to preterm birth increase the demand for well-trained physicians and nurses to improve outcomes (Tso *et al.*, 2023).

Respiratory Distress Syndrome

Respiratory distress syndrome (RDS) is the major complication of preterm birth and primarily affects infants born before 28 weeks of gestation (Barrantes *et al.*, 2021). The pathophysiology of RDS is mainly due to surfactant deficiency in premature infants, which affects inspiratory function and prevents alveolar collapse (Chen *et al.*, 2021). Normally, surfactant facilitates the modulation of surface tension within the alveoli, thereby preventing their collapse during expiration (Parker and Dalziel, 2020). The absence or deficiency of surfactant leads to

increased work of breathing, which is the primary cause of the clinical manifestation of RDS due to lung immaturity (Shi *et al.*, 2020). The tachypnea and visible signs of distress are largely classified as type II respiratory failure, marked by oxygen desaturation, hypercapnia, and even respiratory acidosis (Ko *et al.*, 2021). Classification is significant for key clinical features and intervention, allowing for timely diagnosis and a multidisciplinary plan of care that addresses both the underlying lung immaturity and support with respiratory distress symptoms (De Luca *et al.*, 2022).

Current management options for premature infants with RDS include antenatal corticosteroids, surfactant replacement therapy, and ventilatory support (Ng and Shah, 2021). Nasal continuous positive airway pressure has also been shown to be effective in preventing the progression of RDS by leaving end-expiratory pressure in the airway (Hallman *et al.*, 2022). Interventions associated with lower rates of complications in untimely infants include C-section delivery and prenatal steroids (De Luca, 2021). The combination of high-frequency ventilation and surfactant replacement therapy is beneficial for prematurely born infants (Bhandari *et al.*, 2023). The long-term effect of RDS is suboptimal pulmonary development. Nutritional management is clearly affected, often delivering inadequate calories and protein (Ismailova and Khodjamova, 2024). Preventing premature birth is not solely possible with obstetric interventions as the etiology of premature birth is multifactorial and often idiopathic (Greiner *et al.*, 2021). This emphasizes the need for advanced medical care (Van Wyk *et al.*, 2020). To improve outcomes for infants with RDS, public awareness of the nature of the problem and the potential role that advanced neonatal care can offer is an important part of this discussion (Ekhaguere *et al.*, 2022).

Current Treatment and Care Practices

The mission of healthcare professionals caring for the extremely preterm infant often involves a medical and psychosocial juggling act aimed at

preventing or managing the potentially acute or chronic complications that are a part of the daily life of the very preterm infant in the neonatal intensive care unit (Lee *et al.*, 2020). Guidelines for best practices to improve the likelihood of a healthy outcome, being alive without disability, when a resuscitated infant reaches school age are provided (Croop *et al.*, 2020). For the rest of the NICU care days, the standard of care follows a multitude of best practices, evidence-based interventions, and individualized care recommendations by a multidisciplinary team of healthcare professionals who provide infant and family-centered care (Poindexter *et al.*, 2021). Neonatal medicine encompasses three major focuses, including: (1) maintenance of normal body temperature of the infant in the incubator or on a warm blanket (2) replacement of normal fetal functions with intravenous or enteral feeds and parenteral nutrition support (3) prevention, identification, and management of infections, also termed "sepsis." (Organization, 2022).

In the last 50 years, neonatal disruptive technologies have evolved with innovations such as commercial incubators as the "go-to" care model for the preterm infant, mechanical ventilator care to help with respiration, and monitoring devices that measure vital physiological parameters (Kajantie *et al.*, 2021). Of the many care interventions after birth, early food support required to achieve a faster growth increase in premature infants has been a high research priority. Human milk is the go-to food support for the extremely preterm infant (Kleinhout *et al.*, 2021). Of the many guidelines and recommendations to accomplish the big-picture goal of decreasing morbidity and mortality, financial considerations occur in both high-income and low-resource countries (Organization, 2020). In the United States, the complete costs for very low birth weight care and hospital discharge vary according to demographic information, ranging overall from a specified amount. When a child leaves the neonatal intensive care unit, many will receive ongoing outpatient clinic care (Cordova and Belfort, 2020).

Innovations in Neonatal Care

Innovations in neonatal care have led to significant advancements in the survival and development of extremely premature infants (Batey *et al.*, 2024). Technologies and practices that have been developed, well studied, and are now affecting the treatments for infants include the following aspects (Taha *et al.*, 2023). For respiratory care, new non-invasive techniques for supporting respiration in the newborn require smaller and less invasive endotracheal tubes or none at all, reducing the need for surfactant and potentially reducing bronchopulmonary dysplasia, the most prevalent and serious long-term respiratory consequence of preterm birth (Dumka and Bhandari, 2021). New strategies for nutritional support have been studied with a specific eye on the optimal support of brain growth during and after neonatal intensive care (Hysinger and Ahlfeld, 2023). Drug therapy has been an intensive area of research, and basic research is still investigating new treatment modalities (Sahni and Bhandari, 2023). For developmental support of preterm infants, care practices such as skin-to-skin care and relaxation therapy for mothers and infants have been widely studied in clinical trials (Atag *et al.*, 2020). Increased use of telemedicine in the NICU is allowing the expansion of needed advanced clinical care to rural areas where exceptional care for sick newborns is needed (Boel *et al.*, 2022). Importantly, the research that has led to these new therapies has not only stood the test of time but has also required repetitive clinical trials to fully understand (El-Ferzli *et al.*, 2023).

All of these advances are costly (Shah *et al.*, 2020). Obtaining the full benefits of these can only be achieved through adequately funding them and by expanding the number of trained staff in neonatal care (Olatunji *et al.*, 2024). For example, although we now have top-notch ventilators and non-ventilator respiratory support, daily management decisions made by nurses and therapists can help or hinder infants in their NICU course (Fang *et al.*, 2020). Staff need proper training in these latest technological

therapies and how they affect long-term outcomes (Palmer *et al.*, 2020). Constant research and improvement in clinical practice and innovative trials are needed in the area of management strategies for preterm birth complications (Torous *et al.*, 2021). It is our hope that this critical review of the major developments in the field will inspire further exploration and investment in innovations focused on the very first interventions for newborn babies born sick (Mehta *et al.*, 2021).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Abadiga, M., Wakuma, B., Oluma, A., Fekadu, G., Hiko, N., Mosisa, G., 2021. Determinants of preterm birth among women delivered in public hospitals of Western Ethiopia, 2020: Unmatched case-control study. *PLoS One.*, 16(1): e0245825.

Abebaw, E., Reta, A., Kibret, G.D., Wagnew, F., 2021. Incidence and predictors of mortality among preterm neonates admitted to the neonatal intensive care unit at Debre Markos referral hospital, Northwest Ethiopia. *Ethiop. J. Health. Sci.*, 31(5).

Atag, E., Krivec, U., Ersu, R., 2020. Non-invasive ventilation for children with chronic lung disease. *Front. Pediatr.*, 8: 561639.

Barrantes, J.H., Ortoleva, J., O'Neil, E.R., Suarez, E.E., Larson, S.B., Rali, A.S., Agerstrand, C., Grazioli, L., Chatterjee, S., Anders, M., 2021. Successful treatment of pregnant and postpartum women with severe COVID-19 associated acute respiratory distress syndrome with extracorporeal membrane oxygenation. *ASAIO J.*, 67(2): 132-136.

Batey, N., Henry, C., Garg, S., Wagner, M., Malhotra, A., Valstar, M., Smith, T., Sharkey, D., 2024. The newborn delivery room of tomorrow: emerging and future technologies. *Pediatr. Res.*, 96(3): 586-594.

Been, J.V., Ochoa, L.B., Bertens, L.C., Schoenmakers, S., Steegers, E.A., Reiss, I.K., 2020. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi-experimental study. *Lancet. Public. Health.*, 5(11): e604-e611.

Bell, E.F., Hintz, S.R., Hansen, N.I., Bann, C.M., Wyckoff, M.H., DeMauro, S.B., Walsh, M.C., Vohr, B.R., Stoll, B.J., Carlo, W.A., 2022. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018. *JAMA.*, 327(3): 248-263.

Benestad, M.R., Drageset, J., Hufthammer, K.O., Vollsæter, M., Halvorsen, T., Vederhus, B.J., 2022. Long-term follow-up of self-reported mental health and health-related quality of life in adults born extremely preterm. *Early Hum. Dev.*, 173: 105661.

Betran, A.P., Ye, J., Moller, A.-B., Souza, J.P., Zhang, J., 2021. Trends and projections of caesarean section rates: global and regional estimates. *BMJ Glob. Health.*, 6(6): e005671.

Bhandari, V., Black, R., Gandhi, B., Hogue, S., Kakkilaya, V., Mikhael, M., Moya, F., Pezzano, C., Read, P., Roberts, K.D., 2023. RDS-NExT workshop: consensus statements for the use of surfactant in preterm neonates with RDS. *J. Perinatol.*, 43(8): 982-990.

Boel, L., Banerjee, S., Clark, M., Greenwood, A., Sharma, A., Goel, N., Bagga, G., Poon, C., Odd, D., Chakraborty, M., 2020. Temporal trends of care practices, morbidity, and mortality of extremely preterm infants over 10-years in South Wales, UK. *Sci. Rep.*, 10(1): 18738.

Boel, L., Hixson, T., Brown, L., Sage, J., Kotecha, S., Chakraborty, M., 2022. Non-invasive respiratory support in preterm infants. *Paediatr. Respir. Rev.*, 43: 53-59.

Brunson, E., Thierry, A., Ligier, F., Vulliez-Coady, L., Novo, A., Rolland, A.-C., Eutrope, J., 2021. Prevalences and predictive factors of maternal trauma through 18 months after premature birth: A longitudinal, observational and descriptive study. *PLoS One.*, 16(2): e0246758.

Cao, G., Liu, J., Liu, M., 2022. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019. *JAMA Pediatr.*, 176(8): 787-796.

Chen, X., Zhang, X., Li, W., Li, W., Wang, Y., Zhang, S., Zhu, C., 2021. Iatrogenic vs. spontaneous preterm birth: a retrospective study of neonatal outcome among very preterm infants. *Front. Neurol.*, 12: 649749.

Cheong, J.L., Spittle, A.J., Burnett, A.C., Anderson, P.J., Doyle, L.W., 2020. Have outcomes following extremely preterm birth improved over time?, *Seminars in Fetal and Neonatal Medicine*. Elsevier, pp. 101114.

Chersich, M.F., Pham, M.D., Areal, A., Haghghi, M.M., Manyuchi, A., Swift, C.P., Wernecke, B., Robinson, M., Hetem, R., Boeckmann, M., 2020. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis. *BMJ.*, 371.

Cordova, E.G., Belfort, M.B., 2020. Updates on assessment and monitoring of the postnatal growth of preterm infants. *Neorev.*, 21(2): e98-e108.

Croop, S.E., Thoyre, S.M., Aliaga, S., McCaffrey, M.J., Peter-Wohl, S., 2020. The Golden Hour: a quality improvement initiative for extremely premature infants in the neonatal intensive care unit. *J. Perinatol.*, 40(3): 530-539.

Crump, C., 2020. An overview of adult health outcomes after preterm birth. *Early Hum. Dev.*, 150: 105187.

Davidesko, S., Wainstock, T., Sheiner, E., Pariente, G., 2020. Long-term infectious morbidity of premature infants: is there a critical threshold? *J. Clin. Med.*, 9(9): 3008.

De Luca, D., 2021. Respiratory distress syndrome in preterm neonates in the era of precision medicine: A modern critical care-based approach. *Pediatr. Neonatol.*, 62: S3-S9.

De Luca, D., Tingay, D.G., Van Kaam, A.H., Courtney, S.E., Kneyber, M.C., Tissieres, P., Tridente, A., Rimensberger, P.C., Pillow, J.J., 2022. Epidemiology of neonatal acute respiratory distress syndrome: prospective, multicenter, international cohort study. *Pediatr. Crit. Care. Med.*, 23(7): 524-534.

Deng, K., Liang, J., Mu, Y., Liu, Z., Wang, Y., Li, M., Li, X., Dai, L., Li, Q., Chen, P., 2021. Preterm births in China between 2012 and 2018: an observational study of more than 9 million women. *Lancet Glob. Health.*, 9(9): e1226-e1241.

Doyle, L.W., Spittle, A., Anderson, P.J., Cheong, J.L.Y., 2021. School-aged neurodevelopmental outcomes for children born extremely preterm. *Arch. Dis. Child.*, 106(9): 834-838.

Dumpa, V., Bhandari, V., 2021. Non-invasive ventilatory strategies to decrease bronchopulmonary dysplasia—where are we in 2021? *Children.*, 8(2): 132.

Egesa, W.I., Odong, R.J., Kalubi, P., Ortiz Yamile, E.A., Atwine, D., Turyasiima, M., Kiconco, G., Maren, M.B., Nduwimana, M., Ssebuufu, R., 2020. Preterm neonatal mortality and its determinants at a tertiary hospital in Western Uganda: a prospective cohort study. *Pediatr. Health. Med. Ther.*, 409-420.

Ekhaguere, O.A., Okonkwo, I.R., Batra, M., Hedstrom, A.B., 2022. Respiratory distress syndrome management in resource limited settings—Current evidence and opportunities in 2022. *Front. Pediatr.*, 10: 961509.

El-Ferzli, G.T., Jeibia, M., Miller, A.N., Nelin, L.D., Shepherd, E.G., 2023. Respiratory management of established severe bronchopulmonary dysplasia, *Seminars in Perinatology*. Elsevier, pp. 151816.

Fang, E.F., Xie, C., Schenkel, J.A., Wu, C., Long, Q., Cui, H., Aman, Y., Frank, J., Liao, J., Zou, H., 2020. A research agenda for ageing in China in the 21st century: Focusing on basic and translational research, long-term care, policy and social networks. *Ageing Res. Rev.*, 64: 101174.

Greenbury, S.F., Angelini, E.D., Ougham, K., Battersby, C., Gale, C., Uthaya, S., Modi, N., 2021. Birthweight and patterns of postnatal weight gain in very and extremely preterm babies in England and Wales, 2008–19: a cohort study. *Lancet Child Adolesc. Health.*, 5(10): 719-728.

Greiner, E., Wittwer, A., Albuisson, E., Hascoët, J.-M., 2021. Outcome of very premature newborn receiving an early second dose of surfactant for persistent respiratory distress syndrome. *Front. Pediatr.*, 9: 663697.

Hallman, M., Ronkainen, E., Saarela, T.V., Marttila, R.H., 2022. Management practices during perinatal respiratory transition of very premature infants. *Front. Pediatr.*, 10: 862038.

Hug, L., You, D., Blencowe, H., Mishra, A., Wang, Z., Fix, M.J., Wakefield, J., Moran, A.C., Gaigbe-Togbe, V., Suzuki, E., 2021. Global, regional, and national estimates and trends in stillbirths from 2000 to 2019: a systematic assessment. *Lancet.*, 398(10302): 772-785.

Hysinger, E.B., Ahlfeld, S.K., 2023. Respiratory support strategies in the prevention and treatment of bronchopulmonary dysplasia. *Front. Pediatr.*, 11: 1087857.

Ireland, S., Ray, R., Larkins, S., Woodward, L., 2021. Exploring implicit bias in the perceived consequences of prematurity amongst health care providers in North Queensland—a constructivist grounded theory study. *BMC Pregnancy Childbirth.*, 21: 1-12.

Ismailova, M., Khodjamova, N., 2024. Clinical features of rds course depending on ante and postnatal preventive administration of surfactant. *Sci. Innov.*, 3(D9): 35-41.

Jana, A., Banerjee, K., Khan, P., 2022. Early arrivals: association of maternal obstetric factors with preterm births and their survival in India. *Public Health.*, 211: 37-46.

Joo, E.H., Kim, Y.R., Kim, N., Jung, J.E., Han, S.H., Cho, H.Y., 2021. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. *Int. J. Molec. Sci.*, 22(18): 10122.

Kajantie, E., Johnson, S., Heinonen, K., Anderson, P.J., Wolke, D., Evensen, K.A.I., Räikkönen, K., Darlow, B.A., Van Der Pal, S., Indredavik, M.S., 2021. Common Core Assessments in follow-up studies of adults born preterm—Recommendation of the Adults Born Preterm International Collaboration. *Paediatr. Perinat. Epidemiol.*, 35(3): 371-387.

Kannaujiya, A.K., Kumar, K., Upadhyay, A.K., McDougal, L., Raj, A., James, K., Singh, A., 2022. Effect of preterm birth on early neonatal, late neonatal, and postneonatal mortality in India. *PLOS Glob. Public Health.*, 2(6): e0000205.

Kleinhout, M.Y., Stevens, M.M., Osman, K.A., Adu-Bonsaffoh, K., Groenendaal, F., Zepro, N.B., Rijken, M.J., Browne, J.L., 2021. Evidence-based interventions to reduce mortality among preterm and low-birthweight neonates in low-income and middle-income countries: a systematic review and meta-analysis. *BMJ Glob. Health.*, 6(2): e003618.

Ko, J.Y., DeSisto, C.L., Simeone, R.M., Ellington, S., Galang, R.R., Oduyebo, T., Gilboa, S.M., Lavery, A.M., Gundlapalli, A.V., Shapiro-Mendoza, C.K., 2021. Adverse pregnancy outcomes, maternal complications, and severe illness among US delivery hospitalizations with and without a coronavirus disease 2019 (COVID-19) diagnosis. *Clin. Infect. Dis.*, 73(Supplement_1): S24-S31.

Koullali, B., Van Zijl, M.D., Kazemier, B.M., Oudijk, M.A., Mol, B.W., Pajkrt, E., Ravelli, A.C., 2020. The association between parity and spontaneous preterm birth: a population based study. *BMC Pregnancy Childbirth.*, 20: 1-8.

Kvalvik, L.G., Wilcox, A.J., Skjærven, R., Østbye, T., Harmon, Q.E., 2020. Term complications and subsequent risk of preterm birth: registry based study. *BMJ.*, 369.

Lee, S.K., Beltempo, M., McMillan, D.D., Seshia, M., Singhal, N., Dow, K., Aziz, K., Piedboeuf, B., Shah, P.S., 2020. Outcomes and care practices for preterm infants born at less than 33 weeks' gestation: a quality-improvement study. *Can. Med. Assoc. J.*, 192(4): E81-E91.

Lincetto, O., Banerjee, A., 2020. World Prematurity Day: improving survival and quality of life for millions of babies born preterm around the world. *Am. J. Physiol. Lung. Cell. Mol. Physiol.*, 319(5): L871-L874.

Mactier, H., Bates, S.E., Johnston, T., Lee-Davey, C., Marlow, N., Mulley, K., Smith, L.K., To, M., Wilkinson, D., 2020. Perinatal management of extreme preterm birth before 27 weeks of gestation: a framework for practice. *Arch. Dis. Child. Fetal. Neonatal. Ed.*, 105(3): 232-239..

Mehta, S., Machado, F., Kwizera, A., Papazian, L., Moss, M., Azoulay, É., Herridge, M., 2021. COVID-19: a heavy toll on health-care workers. *Lancet Respir Med*, 9(3): 226-228.

Mekuriyaw, A.M., Mihret, M.S., Yismaw, A.E., 2020. Determinants of preterm birth among women who gave birth in Amhara region referral hospitals, Northern Ethiopia, 2018: institutional based case control study. *Int J Pediatr.*, 2020(1): 1854073.

Menon, R., Behnia, F., Polettini, J., Richardson, L.S., 2020. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes, *Seminars in immunopathology*. Springer, pp. 431-450.

Mitha, A., Chen, R., Altman, M., Johansson, S., Stephansson, O., Bolk, J., 2021. Neonatal morbidities in infants born late preterm at 35-36 weeks of gestation: a Swedish nationwide population-based study. *J. Pediatr.*, 233: 43-50. e5.

Morgan, A.S., Mendonça, M., Thiele, N., David, A.L., 2022. Management and outcomes of extreme preterm birth. *BMJ.*, 376.

Ng, E.H., Shah, V., 2021. Guidelines for surfactant replacement therapy in neonates. *Paediatr. Child. Health.*, 26(1): 35-41.

Nourkami-Tutdibi, N., Tutdibi, E., Faas, T., Wagenpfeil, G., Draper, E.S., Johnson, S., Cuttini, M., Rafei, R.E., Seppänen, A.-V., Mazela, J., 2021. Neonatal Morbidity and Mortality in Advanced Aged Mothers—Maternal Age Is Not an Independent Risk Factor for Infants Born Very Preterm. *Front. Pediatr.*, 9: 747203.

Ohuma, E.O., Moller, A.-B., Bradley, E., Chakwera, S., Hussain-Alkhateeb, L., Lewin, A., Okwaraji, Y.B., Mahanani, W.R., Johansson, E.W., Lavin, T., 2023. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. *Lancet.*, 402(10409): 1261-1271.

Olatunji, A.O., Olaboye, J.A., Maha, C.C., Kolawole, T.O., Abdul, S., 2024. Revolutionizing infectious disease management in low-resource settings: The impact of rapid diagnostic technologies and portable devices. *Int. J. Appl. Res. Soc. Sci.*, 6(7): 1417-1432.

Organization, W.H., 2020. Protecting, promoting and supporting breastfeeding: the baby-friendly hospital initiative for small, sick and preterm newborns.

Organization, W.H., 2022. WHO recommendations for care of the preterm or low birth weight infant. World Health Organization.

Palmer, K., Monaco, A., Kivipelto, M., Onder, G., Maggi, S., Michel, J.-P., Prieto, R., Sykara, G., Donde, S., 2020. The potential long-term impact of the COVID-19 outbreak on patients with non-communicable diseases in Europe: consequences for healthy ageing. *Aging Clin. Exp. Res.*, 32(7): 1189-1194.

Parker, R., Dalziel, S.R., 2020. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. *Cochrane Database Syst. Rev.*, (12).

Perez, A., Thiede, L., Lüdecke, D., Ebenebe, C.U., Von Dem Knesebeck, O., Singer, D., 2020. Lost in transition: health care experiences of adults born very preterm—a qualitative approach. *Front. Public Health.*, 8: 605149.

Perin, J., Mulick, A., Yeung, D., Villavicencio, F., Lopez, G., Strong, K.L., Prieto-Merino, D., Cousens, S., Black, R.E., Liu, L., 2022. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the Sustainable Development Goals. *Lancet Child Adolesc. Health.*, 6(2): 106-115.

Poindexter, B., Cummings, J., Hand, I., Adams-Chapman, I., Aucott, S.W., Puopolo, K.M., Goldsmith, J.P., Kaufman, D., Martin, C., Mowitz, M., 2021. Use of probiotics in preterm infants. *Pediatr.*, 147(6).

Pusdekar, Y.V., Patel, A.B., Kurhe, K.G., Bhargav, S.R., Thorsten, V., Garces, A., Goldenberg, R.L., Goudar, S.S., Saleem, S., Esamai, F., 2020. Rates and risk factors for preterm birth and low birthweight in the global network sites in

six low-and low middle-income countries. *Reprod. Health.*, 17: 1-16.

Quenby, S., Gallos, I.D., Dhillon-Smith, R.K., Podesek, M., Stephenson, M.D., Fisher, J., Brosens, J.J., Brewin, J., Ramhorst, R., Lucas, E.S., 2021. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. *Lancet.*, 397(10285): 1658-1667.

Roman, A., Zork, N., Haeri, S., Schoen, C.N., Saccone, G., Colihan, S., Zelig, C., Gimovsky, A.C., Seligman, N.S., Zullo, F., 2020. Physical examination–indicated cerclage in twin pregnancy: a randomized controlled trial. *Am. J. Obstetr. Gynecol.*, 223(6): 902. e1-902. e11.

Sahni, M., Bhandari, V., 2023. Invasive and non-invasive ventilatory strategies for early and evolving bronchopulmonary dysplasia, *Seminars in Perinatology*. Elsevier, pp. 151815.

Schnider, B., Disselhoff, V., Held, U., Latal, B., Hagmann, C.F., Wehrle, F.M., 2020. Executive function deficits mediate the association between very preterm birth and behavioral problems at school-age. *Early Hum. Dev.*, 146: 105076.

Seasely, A.R., Jauk, V.C., Szychowski, J.M., Ambalavanan, N., Tita, A.T., Casey, B.M., 2024. Maternal and Neonatal Outcomes at Perivable Gestation throughout Delivery Admission. *Am. J. Perinatol.*, 41(S 01): e2952-e2958.

Shah, S., Diwan, S., Kohan, L., Rosenblum, D., Gharibo, C., Soin, A., Sulindro, A., Quinn, N., Provenzano, D.A., 2020. The technological impact of COVID-19 on the future of education and health care delivery. *Pain Physician.*, 23(4S): S367.

Shi, Y., Muniraman, H., Biniwale, M., Ramanathan, R., 2020. A review on non-invasive respiratory support for management of respiratory distress in extremely preterm infants. *Front. Pediatr.*, 8: 270.

Siffel, C., Hirst, A.K., Sarda, S.P., Kuzniewicz, M.W., Li, D.-K., 2022. The clinical burden of extremely preterm birth in a large medical records database in the United States: Mortality and survival associated with selected complications. *Early Hum. Dev.*, 171: 105613.

Singer, D., Thiede, L.P., Perez, A., 2021. Adults born preterm: long-term health risks of former very low birth weight infants. *Dtsch. Arztebl. Int.*, 118(31-32): 521.

Sullivan, A., Arzuaga, B., Luff, D., Young, V., Schnur, M., Williams, D., Cummings, C., 2022. A qualitative study of parental perspectives on prenatal counseling at extreme prematurity. *J. Pediatr.*, 251: 17-23. e2.

Sullivan, A., Cummings, C.L., 2022. Decision making at extreme prematurity: Innovation in clinician education, *Seminars in perinatology*. Elsevier, pp. 151529.

Taha, S., Simpson, R.B., Sharkey, D., 2023. The critical role of technologies in neonatal care. *Early Hum. Dev.*, 187: 105898.

Torous, J., Bucci, S., Bell, I.H., Kessing, L.V., Faurholt-Jepsen, M., Whelan, P., Carvalho, A.F., Keshavan, M., Linardon, J., Firth, J., 2021. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. *World Psychiatry.*, 20(3): 318-335.

Trickett, J., Johnson, S., Wolke, D., 2020. Behavioural and educational outcomes following extremely preterm birth: current

controversies and future directions. Emerging topics and controversies in neonatology: 367-385.

Tso, W.W.Y., Ho, F.K.W., Coghill, D., Lee, T.M.C., Wang, Y., Lee, S.L., Wong, M.S.C., Yam, J.C.S., Wong, I.C.K., Ip, P., 2023. Preterm postnatal complications and risk of attention-deficit/hyperactivity disorder. *Dev. Med. Child. Neurol.*, 65(3): 358-366.

Ugai, T., Sasamoto, N., Lee, H.-Y., Ando, M., Song, M., Tamimi, R.M., Kawachi, I., Campbell, P.T., Giovannucci, E.L., Weiderpass, E., 2022. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. *Nat. Rev. Clin. Oncol.*, 19(10): 656-673.

Van Wyk, L., Tooke, L., Dippenaar, R., Rhoda, N., Lloyd, L., Holgate, S., Alexander, R., Smith, J., 2020. Optimal ventilation and surfactant therapy in very-low-birth-weight infants in resource-restricted regions. *Neonatol.*, 117(2): 217-224.

Youn, Y.-A., Shin, S.-H., Kim, E.-K., Jin, H.-J., Jung, Y.-H., Heo, J.-S., Jeon, J.-H., Park, J.-H., Sung, I.-K., 2021. Preventive intervention program on the outcomes of very preterm infants and caregivers: a multicenter randomized controlled trial. *Brain Sci.*, 11(5): 575.

Zhu, Z., Yuan, L., Wang, J., Li, Q., Yang, C., Gao, X., Chen, S., Han, S., Liu, J., Wu, H., 2021. Mortality and morbidity of infants born extremely preterm at tertiary medical centers in China from 2010 to 2019. *JAMA Net. Open.*, 4(5): e219382-e219382.