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Abstract:

Hepatitis B virus (HBV) remains a significant global health challenge, with an
estimated 257 to 350 million individuals living with chronic HBV infection worldwide.
Based on the results of genome-wide association studies (GWAS), the STAT4 gene
was identified as a viable target for further study into its association with HBV-
related liver diseases. The STAT4 signaling pathway is renowned for its critical role
in interferon gamma-mediated antiviral response, emphasizing its importance in
HBV infection. The present study employed bioinformatics tools to discover
potentially damaging nsSNPs and assess the negative consequences of STAT4
gene mutations. The structural prediction, template refinement, and blind protein-
ligand docking studies were assessed using various computational approaches to
gain a comprehensive understanding of the functional consequences of the STAT4
gene mutations. From a total of 4749 nsSNPs obtained from the NCBI database, 15
missense SNPs were recognized as detrimental by 13 different bioinformatic tools,
including SNPnexus>PolyPhen-2>Predict SNP>Mutpred2>PANTHER>SNP&
GO>Meta SNP, and SuSpect, among others. Protein stability was assessed using
iStable, Mu Pro, CUPSAT, and Dynamut2 databases. The InBio Discover tool was
used to study protein interactions, while the GeneMANIA tool was used to
investigate gene-gene interactions. Mutation 3D and PTM sites were assessed to
confirm SNPs' detrimental nature. To validate nsSNPs such as D668G
(rs751205891), C539Y  (rs774187563), R508C  (rs780829180), T336S
(rs770753645), and P331Q (rs1248978329), protein modeling, structural validation,
and protein-ligand interaction studies were performed. These nsSNPs could serve
as targets for future STAT4-related disease research. Despite the inherent
drawbacks of computational tools, the studies executed in the present work provide
valuable perceptions and may serve as a resource for future in vitro and in vivo
studies on STAT4's involvement in the immune response to HBV infection.
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INTRODUCTION

The intricate distinction between phenotype and
genotype is a key difficulty in studying genomics.
The primary concern is identifying genetic
polymorphism linked with human hereditary
disorders, which remains a target in human and
medical genomics. DNA variations are genetic
biomarkers, and substantial research efforts
have focused on elucidating the interactions
between genetic mutations and their associated
phenotypic effects (Claussnitzer et al., 2020;
Kumar et al., 2022). A Single Nucleotide Variant
(SNV) is a broader term that refers to any
variation in a single nucleotide (A, T, C, or G) in
the genome, which may occur anywhere in the
genome, including coding regions, non-coding
regions, or intergenic regions (Dou et al., 2024).
Single-nucleotide polymorphism (SNP) is a
specific type of SNV that is common within a
population. To be classified as an SNP, the
variant must occur in at least 1% of the
population (Naranjo-Galvis et al.,, 2023).
Missense or non-synonymous (nSSNPs)
mutation involves a substitution of amino acid
sequences and is involved in many inherited
disorders; not all nsSNPs are harmful. Many
nsSNPs are neutral or have no significant effect
on protein function. The impact of an nsSNP
depends on factors such as its location in the
protein, the properties of the substituted amino
acid, and the specific role of the protein in
biological processes (Emadi et al., 2020).

These nsSNPs have the potential to negatively
impact protein composition, stability, and activity
(Lander, 1996; Ng and Henikoff, 2002) by
altering the charge, form, hydrophobicity, protein
synthesis, and interaction between proteins
(Collins et al., 1998; Kucukkal et al., 2015).
Humans have made tremendous progress in
revealing hundreds of millions of SNPs that were
linked to complex clinical problems and
phenotypic features associated with an array of
well-known disorders (Arshad et al.,, 2018;
Krawczak et al., 2000). Multiple analyses have
shown that nearly half of all genetic aberrations
correspond to at least one type of variation
(Radivojac et al., 2010). Over a decade,
genome-wide association studies (GWAS) had
an immense effect on the research of major
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hereditary diseases, revealing several important
contrasts between various mammalian traits and
pathologies (Tam et al., 2019). Studies have
identified an association between the Signal
transducer and activator of transcription 4
(STAT4) mutations and an increased risk of
hepatitis B virus, also known as HBV, and
hepatocellular tumor genesis (Shi et al., 2019).
The STAT4 signaling cascade has significance
for interfferon gamma-mediated  antiviral
responses (Lu et al., 2015). Prior studies in
varied ethnic communities have looked at the
impact of the STAT4 variant (rs7574865 ) on
HBV-induced hepatocellular carcinoma (HCC)
incidence (Li et al., 2019).

Hepatitis B virus (HBV) remains a significant
global health challenge, with an estimated 257 to
350 million individuals living with chronic HBV
infection worldwide (Tan et al., 2021). Despite
the availability of effective HBV vaccines since
1982, the disease continues to have a high
prevalence, particularly in Africa and the
Western Pacific, including China (Zeng et al.,
2021). The global prevalence of Hepatitis B
surface antigen (HBsAgQ), a key indicator of HBV
infection, is estimated to be around 3.6%, with
endemic areas experiencing the highest burden
(Sheena et al.,, 2022). Recent studies have
explored the correlation between the STAT4
mutation (rs7574865) and the progression of
HBV in individuals with persistent infection.
However, the findings of such studies were
conflicting and untrustworthy (Liao et al., 2014;
Shi et al., 2019). Furthermore, HBV transmission
and HCC development are complex events
involving numerous mutations in a variety of
biological processes (Jiang et al., 2021).

The activity of STAT4 in HBV infection is thought
to promote the production of Thl and Th2
cytokines, leading to increased hepatic
inflammation (Wang et al., 2014). The STAT4
gene (SLEB11 and DPMC), located on
chromosome 2g32.2-g32.3, encodes a 748-
amino-acid protein critical for the Janus kinase
(JAK)-STAT pathway (Qi et al.,, 2022). This
pathway influences immune cell activation and
response to therapies like IFN-alpha, making
STAT4 mutations relevant to understanding
clinical variability in chronic HBV treatment
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outcomes. Given the role of STAT4 in hepatic
inflammation and immune regulation, its
mutations may influence susceptibility to HBV
infection and disease progression (Jiang et al.,
2016). The identification of functional mutations
in a disease-related gene is a substantial issue
that frequently necessitates examining a large
number of SNPs in an ideal genome. The
present study was undertaken to identify
potentially damaging nsSNPs using
computational methods and to evaluate the
damaging nature of mutational variations in the
human STAT4 gene. Using In-Silico tools to
analyze STAT4 variations seeks to foster large-
scale investigations and the invention of
personalized therapies for diseases associated
with these variants. Additionally, the study
examines the discovery of possible drug targets
and their related binding interactions with
ligands, to address the future STAT4 challenges.
The future challenges of STAT4 research in
HBV include understanding its role in antiviral
immunity and liver inflammation, as it regulates
cytokine responses critical to HBV clearance.
Identifying damaging nsSNPs in STAT4
associated with impaired immune responses
could help develop personalized therapies.
Additionally, designing specific inhibitors or
modulators to balance STAT4 activity without
exacerbating liver damage remains a significant
therapeutic challenge.
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MATERIALS AND METHODS
Data retrieval

The genomic details, including gene names,
aliases, HGNC ID, NCBI accession number,
ENSEMBL ID, genomic coordinates, gene type,
transcript counts, variation counts, UniProtKB

ID, reference sequence status, and gene
expression was obtained from various
databases such as NCBI

(https://www.ncbi.nlm.nih.gov/gene), ENSEMBL
(http://asia.ensembl.orq), HGNC
(https://www.genenames.org), and Gene Card
(https://www.genecards.org). Figure (1) shows
the entire workflow of the present study. The
data for the human STAT4 gene and its
sequence in FASTA format were gathered from
the NCBI database (Katsaouni et al., 2023;
Rozario et al., 2021). The ENSEMBL and NCBI
databases were used to extract STAT4 gene
variants. These variations were validated further
using the dbSNP database
(https://www.ncbi.nim.nih.gov/snp) (McLaren et
al., 2016). The collected SNP results were saved
as a standard comma-separated values (CSV)
Excel file (Azmi et al., 2023).

Protein Modeling and
Structure Validation/
Refinement

Evaluating the
Protein Stability

mutations

PTM prediction

Fig. 1. A visual representation showing different computational tools employed in the current study.
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Evaluating deleterious effects of protein-
coding SNPs

To explore the functional consequences of
damaging SNPs, SIFT>Polyphen>PPh2>Predict
SNP>Mutpred2> PANTHER were used (Rozario
et al., 2021). These confirmed the precision of
our findings, and we categorized such SNPs as
high-risk as they were predicted to be
detrimental (Hossain et al, 2020). For
SNPNEXUS (https://www.snp-nexus.org), an
integrated program that include Sorting
Intolerant from Tolerant (SIFT) and
Polymorphism  Phenotyping (PolyPhen) is
accessible (Hasnain et al., 2020). The SIFT
algorithm assigns a probability score to assess
their deleteriousness. SNPs with a probability
score below 0.05 are considered detrimental,
whereas those with a probability score equal to
or greater than 0.05 are tolerated (Honnalli and
Adiga, 2023). PolyPhen results are classified as
benign, probably and possibly detrimental and a
score of 1 has a detrimental effect on the protein
(Hasnain et al., 2020; Jahandideh and zhi, 2014;
Mahmud et al., 2016). The common nsSNPs
from SIFT and Polyphen were evaluated for the
present study. PolyPhen2 (PPh2) is available at
https://genetics.bwh.harvard.edu/pph2, and it
predicts the consequence of an amino acid
change based on certain empirical principles on
its sequence (Mahmood et al., 2021).

The input query, which comprised both wild and
substituted amino acid sites, was submitted in
FASTA format. The substitution is assessed as
probably, possibly damaging, or benign, with
scores ranging from 0 (benign) to 1 (damaging)
and based on position-specific independent
score differences, with 1 being the most
deleterious (Adzhubei et al., 2013). The
PANTHER tool can be  found at
https://www.pantherdb.org, which  examines
substitutions using position-specific evolutionary
conservation scores computed from the
alignment of several proteins (Ahmad et al.,
2023). The most predicted mutations were
further examined by the MutPred2 web server
(http://mutpred.mutdb.org) to sort out deleterious
or neutral variations in the protein sequence
(Pejaver et al., 2020). The PredictSNP online
tool (https://loschmidt.chemi.muni.cz/predictsnp)
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collects input data from several tools to estimate
the impact of an amino acid substitution
(Mohkam et al., 2022) and provides a consensus
prediction with higher accuracy and precision
(Girmay et al., 2022).

Forecasting disease-linked nsSNPs

Using protein functional annotations, SNPs &
GO determines whether a genetic variant is
associated with disease and the tool is available
at https://snps.biofold.org/snps-and-go/snps-
and-go.html (Capriotti et al., 2017). To offer
more details regarding the impact of mutations
on a protein sequence, we used the SuSPect
web server (http://www.sbg.bio.ic.ac.uk/suspect)
to determine whether a protein residue is prone
to deleterious mutations (de Souza Albuquerque
et al.), and provide results that range from 0
(neutral) to 100 (deleterious) (Ittisoponpisan and
Jeerapan, 2021). Meta-SNP are available at
http://snps.biofold.org/meta-snp, a web-based
tool that forecasts the impact of SNPs using the
support vector machine method (Jabuk and
Jaralla, 2023). It was optimized to forecast
disease-associated point mutations and scored
with > 0.5 identifying Deleterious variants
(Capriotti et al., 2013).

Analysis of protein stability

I-Stable (http://predictor.nchu.edu.tw/iStable) is
an integrated tool for evaluating protein stability
variations in a protein sequence. The use of
meta-predictions to improve results in either
increasing or decreasing protein stabilities (Chen
et al., 2013). MU Pro
(http://mupro.proteomics.ics.uci.edu) evaluates
amino acid variations and generates a DDG
value with a score less than 0 showing that the
mutation reduces protein stability and a score
greater than 0, implying the variation increases
protein stability (Hasnain et al., 2020; Wang et
al., 2020b). The selected nsSNPs were
examined using the DynaMut2 server
(https://biosig.lab.uq.edu.au/dynamut?). It
displays the change in stability (G) calculated in
kcal/mol, and a negative G value implies that the
influence is destabilizing, whereas a positive
number indicates that the effect is stabilizing
(Rodrigues et al.,, 2021). Cologne University
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Protein Stability Analysis Tool (CUPSAT)
available at https://cupsat.brenda-enzymes.orq,
is used to predict stable protein variations
resulting from single amino acid mutations (Saini
et al., 2018). The CUPSAT server is suitable for
a broad spectrum of proteins with PDB or
FASTA input formats (Choudhury et al., 2022).

Gene—gene and protein-protein interactions

The GeneMANIA server (https://genemania.orq)
used a large quantity of functional association
data to build a biological network interaction
involving the top 20 genes associated with our
STAT4 gene (Mustafa et al.,, 2020). Using a
massive store of biological correlation
details may uncover new genes associated
with a set of input genes (Barali¢ et al., 2022;
Chetta et al, 2020). The InBio Discover
platform, which can be found at https://zs-
revelen.com, was used to create a network of
high-confidence  protein-protein  interactions
(PPIs). It exploits the inBio-Map, an extensive
overview of human protein biology with over 6
million traceable entries. It is based on expected
trustworthy networks that take scientific proof,
pathways, and other curated data to provide
helpful insights into the challenging landscape of
cellular protein interface (Li et al., 2017).

Identification of mutation clusters

Mutation3D (http:/mutation3d.org) is used for
locating clusters of structural changes and offers
the analysis of variants in a variety of forms,
allowing for uniform access to mutation clusters
derived from a massive dataset of over 975,000
somatic variations reported by 6811 tumor
genomic research. Users enter a protein of
interest with related mutations, and the result is
a protein model with its amino acid clusters. It is
a useful tool for scholars studying the regional
distribution and potential functional impact of
mutations in protein structure (Meyer et al.,
2016).

Estimating post-translational modifications
(PTM)

Understanding PTMdata enables more
knowledge of the disease association, etiology,
and proteins  that undergo  covalent
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modifications. These entail the use of functional
groups, such as phosphorylation, acetylation,
methylation, or ubiquitination all are diverse
types of PTMs (Hasan and Khatun, 2018).
When amino acid sequences are submitted as
input, MusiteDeep (https://www.musite.net) is
the first deep-learning algorithm to predict
phosphorylation sites (Wang et al., 2020a; Wang
et al., 2017). PhosphoSitePlus (PSP), available
at https://www.phosphosite.org, provides data
for the study of mammalian PTMs, which
contributes to a better understanding of the
regulatory mechanisms in cellular processes
(Ramazi and Zahiri, 2021). To limit the projected
outputs of bioinformatic tools, we developed a
criterion. Given the enormous number of
nsSNPs, only the most probably damaging
variants found by all 13 servers were used for
further study, including protein modeling and
protein-ligand interaction.

Protein structure assessment and modeling

For protein modeling, SWISS-MODEL
(https://swissmodel.expasy.orq) distinguishes
itself as a completely computerized protein
structural homology-modeling tool. It employs
the UniProtKB database for precise target-
template alignment, enabling researchers to
build homology models for specific proteins of
interest (Rozario et al., 2021). As input queries,
the FASTA format was submitted and visualized
by the UCSF Chimera tool accessible at
https://www.cgl.ucsf.edu/chimera (Verma et al.,
2023). Galaxy Refine is used to refine our
predicted models and can be found at
https://galaxy.seoklab.org/cgi-

bin/submit.cqi?type=REFINE. This tool improved
the accuracy and quality of the structural models
developed throughout our inquiry (Seok et al.,
2021). SAVES (https://saves.mbi.ucla.edu) has
been used to validate the predicted protein 3D
structure with a high stereochemical value of the
Ramachandran plot, and the ProCheck proves
the most favorable zones. The Ramachandran
plot generated by the ProCheck program, with
over 90% of residue in the most favorable
regions, is considered good quality (Colovos and
Yeates, 1993; Mahmud et al., 2016). The
program TM-align (https://zhanggroup.org/TM-
align) was used for comparing the structures of

83



https://cupsat.brenda-enzymes.org/
https://genemania.org/
https://zs-revelen.com/
https://zs-revelen.com/
http://mutation3d.org/
https://www.musite.net/
https://www.phosphosite.org/
https://swissmodel.expasy.org/
https://www.cgl.ucsf.edu/chimera
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://saves.mbi.ucla.edu/
https://zhanggroup.org/TM-align
https://zhanggroup.org/TM-align

International Journal of Molecular Microbiology

native and mutant proteins. It calculates the
template modeling score (TM-score) and the
root-mean-square deviation (RMSD) that ranges
from 0 to 1, with 1 indicating perfect similarity
between two structurally related components
(Carugo and Pongor, 2001; Zhang and Skolnick,
2004; Zhang and Skolnick, 2005).

Protein-Ligand docking analysis

To investigate the consequences of deleterious
nsSNPs on STAT4 binding affinity, we used a
molecular docking method with the PyRx virtual
screening tool available at
https://pyrx.sourceforge.io  (Ebrahim et al,
2022). We built a suitable target protein from the
STAT4 structure coupled with active protein. The
active variables were fixed as the grid size of the
center (XYZ axis) to dock the ligands, with the
10 highest exclusive computed for each ligand.
The PDB files of the ligands and proteins were
converted to PDBQT format using the Auto Dock
tools (Ferrari and Patrizio, 2021). The molecular
structure of the ligand molecules was retrieved
from PubChem available at
http://pubchem.ncbi.nim.nih.gov (Singh et al,
2021). The docking result and binding interaction
between ligand and receptor proteins were
displayed using Discovery Studio Visualizer
software (https://discover.3ds.com/discovery-
studio-visualizer-download) and PyMOL
(https://pymol.org/2) (Shukla et al., 2023).
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RESULTS

Screening of nsSNPs

The dataset classifies 4749 SNPs associated
with the STAT4 gene based on their genomic
location and functional type. Of these, 2500
SNPs are found in the coding regions, with 619
exonic SNPs, including 358 synonymous
mutations and 692 non-synonymous mutations,
which may have a more significant impact on
protein function. The remaining 2250 non-coding
SNPs are primarily distributed in intronic regions,
58 SNPs are located in untranslated regions
(UTRs), with 56 in the 3' UTR and 2 in the 5'
UTR. There are also 122 SNPs in the 5
upstream region and 650 in the 3' downstream
region.

Moreover, Table (1) presents the STAT4 protein
information. For further in silico analysis,
missense or Nonsynonymous SNPs (nsSNPs)
were selected and predicted by SIFT and
Polyphen. Table (2) provides detailed
information on all the nsSNPs, while Figure (2)
visually represents the percentage distribution of
all SNPs. Subsequently, additional criteria were
employed to distinguish between disease-
causing harmful SNPs and missense SNPs with
unknown significance.

Coding u Non-coding Exonic
= Synonymous
S'upstream = 3'downstream 5SUTR

= Non-synonymous 3UTR

692

Regions of SNPs

Fig. 2. The distribution of all SNPs in the human STAT4 gene.
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Table 1. STAT4 proteins retrieve information.

2025; 8(1): 79-102

Description Protein Information
Recommended name Signal Transducer And Activator Of Transcription 4 (STAT4)
Amino Acids 748
Gene ID 6775
Ensembl ID ENSG00000138378
Location 2032.2-932.3
Exon count 25
NCBI Nucleotide NC_000002.12
Base Pairs 191029576..191151596
Mass (Da) 85941
Primary accession Q14765
Organism Homo Sapiens
FASTA sequence >sp|Q14765|STAT4_HUMAN Signal transducer and activator of transcription 4 OS=Homo sapiens

0X=9606 GN=STAT4 PE=1 SV=1

MSQWNQVQQLEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDWEAASNNETMATILLQNL
LIQLDEQLGRVSKEKNLLLIHNLKRIRKVLQGKFHGNPMHVAVVISNCLREERRILAAAN
MPVQGPLEKSLQSSSVSERQRNVEHKVAAIKNSVQMTEQDTKYLEDLQDEFDYRYKTIQT
MDQSDKNSAMVNQEVLTLQEMLNSLDFKRKEALSKMTQIIHETDLLMNTMLIEELQDWKR
RQQIACIGGPLHNGLDQLQNCFTLLAESLFQLRRQLEKLEEQSTKMTYEGDPIPMQRTHM
LERVTFLIYNLFKNSFVVERQPCMPTHPQRPLVLKTLIQFTVKLRLLIKLPELNYQVKVK
ASIDKNVSTLSNRRFVLCGTNVKAMSIEESSNGSLSVEFRHLQPKEMKSSAGGKGNEGCH
MVTEELHSITFETQICLYGLTIDLETSSLPVVMISNVSQLPNAWASIIWYNVSTNDSQNL
VFFNNPPPATLSQLLEVMSWQFSSYVGRGLNSDQLHMLAEKLTVQSSYSDGHLTWAKFCK
EHLPGKSFTFWTWLEAILDLIKKHILPLWIDGYVMGFVSKEKERLLLKDKMPGTFLLRFS
ESHLGGITFTWVDHSESGEVRFHSVEPYNKGRLSALPFADILRDYKVIMAENIPENPLKY
LYPDIPKDKAFGKHYSSQPCEVSRPTERGDKG YVPSVFIPISTIRSDSTEPHSPSDLLPM
SPSVYAVLRENLSPTTIETAMKSPYSAE

Identification of the effect of deleterious
SNPs

To evaluate the functional consequences of
deleterious STAT4 nsSNPs, a sequential
analysis was conducted using SIFT, Polyphen,
PPh-2, Predict SNP, Mutpred2, and PANTHER.
The SIFT and PolyPhen programs generated a
bar graph distribution of SNPs, as shown in
Figure (S1), to visually represent the predicted
functional impacts of the identified missense
mutations. Notably, 28 nsSNPs were identified
as posing a high risk of affecting protein
function. A detailed dataset for these 28
commonly found nsSNPs is provided in Table
(2). In PPh2 analysis, 27 nsSNPs were identified
as potentially detrimental. The T177A
(rs758709109) variant, among the 28 nsSNPs
assessed, was anticipated to be highly possibly
damaging, with a 0.995 PSIC score. Predict
SNP analysis identified 24 SNPs as highly
deleterious, while N479S, K343Q, R241Q, and
T177A were deemed to have a neutral effect on
the STAT4 protein, as detailed in Table (2).
MutPred2 results indicated that 26 out of the 28
nsSNPs were predicted to be deleterious to the

STAT4 protein. The results showed prediction
scores ranging from 0.945 to 0.502, with
corresponding P values greater than 0.05, which
suggests a likely deleterious impact on the
protein. Notably, the L307F (0.325) and T177A
(0.209) variants exhibited P scores less than 0.5.
Utilizing the PANTHER tool, predictions were
made regarding the influence of nsSNPs on
protein function. For 26 nsSNPs, the estimated
scores indicated a probability of adverse effects
greater than 0.5. Additionally, two SNPs showed
a possibly damaging prediction.

Screening of disease-associated nsSNPs

To identify disease-associated nsSNPs with
significant potential to alter the structure or
function of the STAT4 protein, SNP& GO, Meta
SNP, and SuSpect tools were employed. Each
algorithm utilizes distinct parameters to evaluate
nsSNPs as disease-related or neutral. The SNP
& GO algorithm highlighted 14 nsSNPs
associated with the disease, while the remaining
14 nsSNPs were classified as neutral. A
summary of the prediction results is provided in
Table (3).
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According to Meta-SNP, R70C, T177A, R241Q,
and K343Q were predicted to have a neutral
effect on the STAT4 protein, based on a
prediction score threshold of <0.5 for neutrality
and >0.5 for disease causation. In the case of
the SuSpect Server, 25 nsSNPs were identified
as highly disease-causing. However, three

2025; 8(1): 79-102

specific variants, D668G (rs751205891), G618A
(rs776987023), and N479S (rs1376354446)
were classified as neutral. The comprehensive
details of these predictions are provided in Table

@A).

Table 2. Different computational tools confirmed detrimental nsSNPs.

SIFT Polyphen Polyphen2 Predict SNP  Mutpred2 Panther

Variation 1D Mutations o ° o ° o ° S ° <

9 QL 9 QL Prediction  Score L o QL o

g & & & i 5 i o

N

rs751205891 D668G 0 D 0.997 PD PD 1 D 0.828 PD 0.85
rs776987023 G618A 0 D 0.998 PD PD 0.999 D 0.568 PD 0.74
rs771192197 G605R 0 D 1 PD PD 1 D 0.945 PD 0.89
rs770306554 L597S 0 D 1 PD PD 1 D 0.88 PD 0.85
rs3024933 R584W 0 D 1 PD PD 1 D 0.698 PD 0.74
rs774187563 C539Y 0 D 0.947 PD PD 0.997 D 0.682 PD 0.74
rs1314004125 M517R 0 D 0.928 PD PD 0.99 D 0.852 PD 0.74
rs376947712 R508H 0 D 0.909 PD PD 1 D 0.56 PD 0.85
rs780829180 R508C 0 D 0.971 PD PD 1 D 0.633 PD 0.85
rs1376354446 N479S 0 D 0.982 PD PD 1 N 0.506 PD 0.74
rs759785386 D476Y 0 D 0979 PD PD 0.998 D 0.632 PD 0.5
rs1256812727 N471H 0 D 1 PD PD 1 D 0.81 PD 0.85
rs544508292 P450A 0 D 0998 PD PD 1 D 0.682 PD 0.89
rs1274749529 K343Q 0 D 0.995 PD PD 1 N 0.759 PD 0.74
rs770753645 T336S 0 D 0.988 PD PD 0.999 D 0.502 PD 0.85
rs1248978329 P331Q 0 D 0.979 PD PD 0.996 D 0.739 PD 0.89
rs1424401939 P325L 0 D 0.914 PD PD 0.998 D 0.666 PD 0.74
rs1399751509 C323Y 0 D 1 PD PD 1 D 0.81 PD 0.74
rs548245892 L307F 0 D 1 PD PD 1 D 0.325 PD 0.85
rs764656850 G248R 0 D 1 PD PD 1 D 0.696 PD 0.85
rs764990697 R241Q 0 D 0.995 PD PD 1 N 0.711 PD 0.74
rs1280348818 R240W 0 D 0.997 PD PD 1 D 0.633 PD 0.85
rs758709109 T177A 0 D 0.995 PD Possibly 0.569 N 0.209 PD 0.74
rs751076320 R70L 0 D 0.97 PD PD 1 D 0.64 Possibly 0.5
rs1468059700 R70C 0 D 0.995 PD PD 1 D 0.502 Possibly 0.5
1s761161672 D42G 0 D 0.998 PD PD 1 D 0.79 PD 0.74
rs1207353579 Q41E 0 D 0.973 PD PD 0.999 D 0.658 PD 0.74
rs867270496 R31Q 0 D 0.996 PD PD 1 D 0.844 PD 0.85

*D; Deleterious, N; Neutral, PD; Probably damaging.
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Table 3. Screening of possible disease-causing nsSNPs of STAT4 gene.

o ) SNPs & GO Meta SNP Suspect
Variation ID Mutations
Effect RI Effect Score Prediction Score
rs751205891 D668G Disease 0 Disease 2 Neutral 16
rs776987023 G618A Neutral 4 Disease 1 Neutral 15
rs771192197 G605R Disease 7 Disease 6 Disease 67
rs770306554 L597S Disease 4 Disease 5 Disease 96
rs3024933 R584W Disease 1 Disease 1 Disease 56
rs774187563 C539Y Disease 6 Disease 5 Disease 53
rs1314004125 M517R Disease 1 Disease 0 Disease 48
rs376947712 R508H Disease 4 Disease 4 Disease 57
rs780829180 R508C Disease 6 Disease 6 Disease 78
rs1376354446 N479S Neutral 1 Disease 3 Neutral 24
rs759785386 D476Y Disease 2 Disease 4 Disease 39
rs1256812727 N471H Disease 4 Disease 7 Disease 65
rs544508292 P450A Disease 2 Disease 4 Disease 82
rs1274749529 K343Q Neutral 7 Neutral 6 Disease 35
rs770753645 T336S Neutral 1 Disease 3 Disease 53
rs1248978329 P331Q Neutral 1 Disease 4 Disease 77
rs1424401939 P325L Neutral 3 Disease 0 Disease 38
rs1399751509 C323Y Disease 0 Disease 4 Disease 49
rs548245892 L307F Neutral 1 Disease 2 Disease 37
rs764656850 G248R Disease 3 Disease 3 Disease 27
rs764990697 R241Q Neutral 6 Neutral 7 Disease 22
rs1280348818 R240W Neutral 1 Disease 2 Disease 46
rs758709109 T177A Neutral 6 Neutral 6 Disease 28
rs751076320 R70L Neutral 2 Disease 2 Disease 30
rs1468059700 R70C Neutral 2 Neutral 1 Disease 46
rs761161672 D42G Neutral 6 Disease 4 Disease 41
rs1207353579 Q41E Neutral 6 Disease 1 Disease 51
rs867270496 R31Q Disease 0 Disease 6 Disease 9
Characterization of Protein Stability Changed CUPSAT server analysis revealed that 8

by Mutations

The structural impact of 28 potential nsSNPs
was assessed using the Mu-Pro servers, and the
findings related to protein stability are detailed in
Table (4). Notably, MU Pro identified K343Q
(rs1274749529) and P325L (rs1424401939)
showing an increased impact on protein stability.
According to i-stable, 11 nsSNPs were found to
enhance protein stability, while 32 nsSNPs were
associated with a reduction in protein
expression, as indicated in Table (4). The

mutations had a stabilizing effect, while 20
NSSNPs were destabilizing. Furthermore, the
DynaMut2 server was utilized to calculate
general dynamic traits of the highest deleterious
23 nsSNPs. Predictions for A entropy energy
and AAG by ENCoM, comparing the wild-type
and mutant STAT4 protein, indicated that four
mutants exhibited a stabilizing effect, while 24
were destabilizing. A comprehensive overview of
these structural assessments is presented in
Table (4).
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Table 4. Protein Stability was analyzed by using MUpro, iStable, CUPSAT, and Dynamut2

Mu-Pro i-Stable CUPSAT DynaMut2
Variation ID Mutations Score
Effect Score Stability Score Stability Score Stability (kcal/mol)
rs751205891 D668G Decrease -1.7024511 Decrease 0.7138 Destabilizing  -0.79 Destabilizing -0.41
rs776987023 G618A Decrease -0.70397415 Increase 0.654043 Destabilizing  -2.12 Destabilising -0.27
rs771192197 G605R Decrease -1.0906461 Increase 0.676865 Destabilizing  -0.08 Destablising -0.83
rs770306554 L597S Decrease -2.2844317 Decrease 0.726237 Destabilizing  -2.01 Destabilising -3.23
rs3024933 R584W Decrease -0.6662067 Decrease 0.758422 Stabilizing 1.01 Stabilising 0.12
rs774187563 C539Y Decrease -1.2030191 Decrease 0.731439 Stabilizing 2.54 Destabilising -0.79
rs1314004125 M517R Decrease -1.0711499 Increase 0.568745 Destabilizing  -2.75 Destabilising -0.79
rs376947712 R508H Decrease -1.1683329 Increase 0.695355 Destabilizing  -1.99 Destabilising -0.94
rs780829180 R508C Decrease 0.90240299 Decrease 0.603023 Destabilizing  -18.5 Destabilising -0.01
rs1376354446 N479S Decrease -0.9309748 Decrease 0.7341 Destabilizing  -0.43 Destabilising -0.11
rs759785386 D476Y Decrease -0.5489519 Increase 0.750551 Destabilizing  -1.39 Stabilising 0.37
rs1256812727 N471H Decrease -0.9882099 Decrease 0.677074 Destabilizing  -8.16 Destabilising -1.12
rs544508292 P450A Decrease -1.2378193 Decrease 0.740649 Destabilizing  -4.59 Destabilising -1.51
rs1274749529 K343Q Increase 0.3000945 Increase 0.73934 Destabilizing  -9.07 Destabilising -0.77
rs770753645 T336S Decrease -0.395409 Decrease 0.641611 Destabilizing  -3.54 Destabilising -1.09
rs1248978329 P331Q Decrease -0.7923609 Decrease 0.778394 Destabilizing  -7.82 Destabilising -11
rs1424401939 P325L Increase 0.2452688 Increase 0.634104 Destabilizing  -0.47 Destabilising -0.47
rs1399751509 C323Y Decrease -0.5832999 Decrease 0.699872 Stabilising 2.81 Destabilising -0.85
rs548245892 L307F Decrease -0.83214687 Decrease 0.803803 Destabilizing  -0.35 Destabilising -1.51
rs764656850 G248R Decrease -0.3619475 Decrease 0.685776 Destabilizing  -1.35 Destabilising -0.87
rs764990697 R241Q Decrease -0.8471517 Decrease 0.772587 Stabilising 0.86 Destabilising -0.7
rs1280348818 R240W Decrease -0.5462583 Decrease 0.686031 Stabilising 3.35 Destabilising -1.14
rs758709109 T177A Decrease -1.7647132 Decrease 0.672871 Stabilising 0.35 Destabilising -0.26
rs751076320 R70L Decrease -0.2161614 Decrease 0.578442 Destabilizing  -1.48 Stabilising 0.45
rs1468059700 R70C Decrease -0.7118859 Decrease 0.592308 Destabilizing  -1.71 Stabilising 0.2
rs761161672 D42G Decrease -1.4731837 Decrease 0.692628 Destabilizing  -0.89 Destabilising -0.04
rs1207353579 Q41E Decrease -1.0127879 Decrease 0.705554 Stabilising 0.95 Destabilising -0.01
rs867270496 R31Q Decrease -1.0198301 Decrease 0.763682 Stabilising 12 Destabilising -1.54

Gene-gene and PPls Analysis

GeneMANIA was employed to construct the
gene-gene interaction network for the STAT4
target gene along with the closest 20 genes, as
illustrated in Figure (3A). The detailed interaction
data can be found in Supplementary Table (S1).
To gain a more comprehensive understanding, a
network of Protein-Protein Interactions (PPIs)

was also constructed using the inBio-Map
resource, as depicted in Figure (3B). This PPI
network prediction identified 26 interacting
proteins and a total of 116 interactions. This
approach helps unravel the complex web of
interactions among proteins associated with
STAT4, providing insights into its potential
functional relationships within cellular pathways.
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Fig. 3. A) Gene-Gene interaction and B) PPI interface network for STAT4 protein identified in Bio-Discover. Network
correlations are shown as blue lines.

3D visualization of STAT4 mutation

To visualize the locations of the 28 nsSNPs on
the STAT4 protein, the outputs from the
Mutation3D server were loaded onto PyMol
software. The result gives a 3D representation of
the human STAT4 protein (Figure 4), wherein
the mutated residues were highlighted in red.

240,241,450,471,476,479
323,325, 331, 336,343
248, 508(2)

517,584,597

31,41,42

The R240W, R241Q, P240A, N471H, N479S,
and D476Y nsSNPs formed a clustered mutation
(colored red), meanwhile, the remaining 22
SNPs were represented as scattered mutations
(colored blue). This visualization provides a clear
spatial representation of the distribution of these
mutations within the STAT4 protein structure.

AN P AN

Fig. 4. Mutation3D predicted structural modeling of variant sites in STAT4 protein.

Prediction of post-translational modification

The Musite-deep server was employed to predict
post-translational modification sites associated

with our candidate SNPs. Protein sequences in
FASTA format were submitted as input, and the
results revealed that only R508H and R508C
were associated with methylarginine. Notably, N-
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linked glycosylation at N471H was examined, as
outlined in Table (5). Moreover, Phosphosite
Plus analysis exposed phosphorylation and
ubiquitylation events on the STAT4 gene, as
illustrated in (Figure 5). This information
provides insights into potential PTM
modifications that may influence the functionality

2025; 8(1): 79-102

of the STAT4 protein. Figure (S2) illustrates the
15 high-risk nsSNPs identified as detrimental to
the structure and/or function of the STAT4
protein. This analysis was conducted using 13 in
silico tools, which collectively evaluated the
potential impacts of these variants.

Table 5. PTM Prediction of STAT4 protein by Musite Deep algorithm.

Mutations PTM score Cutoff=0.5
D668G - -

G618A - -

G605R - -

L597S - -

R584W Methylarginine:0.027 None
C539Y S-palmitoyl_cysteine:0.04 None
M517R - -

R508H Methylarginine:0.817 Methylarginine:0.817
R508C Methylarginine:0.817 Methylarginine:0.817
N479S N-linked_glycosylation:0.036 None
D476Y - -

N471H N-linked_glycosylation:0.917 N-linked_glycosylation:0.917
P450A Hydroxyproline:0.042 None
K343Q ::é?;l :32?::828275;/!;;%(;5 Ir?élc())nogslﬁ/? rixylysine:0.018 None
T336S Phosphothreonine:0.067;0-linked_glycosylation:0.065 None
P331Q Hydroxyproline:0.038 None
P325L Hydroxyproline:0.034 None
C323Y S-palmitoyl_cysteine:0.071 None
L307F - -

G248R - -

R241Q Methylarginine:0.046 None
R240W Methylarginine:0.033 None
T177A Phosphothreonine:0.152;0-linked_glycosylation:0.065 None
R70L Methylarginine:0.02 None
R43L - -

R43H - -

R70L Methylarginine:0.02 None
R43C - -

R70C Methylarginine:0.02 None
D42G - -

Q41E Pyrrolidone_carboxylic_acid:0.124 None

R4Q - -

R31Q Methylarginine:0.045 None
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Fig. 5. PhosphoSite Plus anticipates PTM sites on the STAT4 gene.

Prediction of target protein modeling

The prediction scores reveal that 15 highly
conserved nsSNPs, out of the 28 evaluated on
the STAT4 protein, were identified as significant
protein  conformational modifications. This
evaluation was conducted using 13 different in
silico tools, which provided a comprehensive
analysis of the potential structural and functional
impacts of these mutations. For comparative
homology modeling, sequences with at least
>30% similarity and identity were chosen. We
obtained 50 templates, all displaying 100%
sequence identity with STML ID (Q14765.1.A),
for the query sequence. We modeled the 3D
structure of the STAT4 protein using the
template ID Q14765.1.A (range: 1-748aa;
coverage: 1.00), specifically the Alphafold DB
model of STAT4 HUMAN (Organism: Homo
sapiens) for the query sequence as presented in
Figure (6A). The results, derived from a template
with a model quality refined by Galaxy Refine,
were further validated using QMEAN with a
value of -0.44. The proteins mentioned earlier
were downloaded along with their respective
PDB files and subjected to mutation using
PyMol.

The high RMSD value of 0.33 for mutants
D668G, C539Y, R508C, T336S, and P331Q
suggests that these mutations lead to substantial
structural deviations from the native protein as
outlined in Table (6), implying that the mutations
might have a considerable impact on the protein
conformation. To validate the modeled
framework, SAVES was employed, and the
Ramachandran plot evaluation was conducted to
examine the secondary structure. The resulting
structure adhered to all constraints imposed by
potential energy calculations. A significant
majority of the amino acid residues in the STAT4
protein (91.50%) were located in a highly
favorable region, as illustrated in Figure (6B).
The comparison plot indicates the quality of the
model in comparison with experimental
structures of similar sizes. The x-axis shows the
protein length. The y-axis is the normalized
QMEAN score. The STAT4 model is
represented as a red star as shown in Figure
(6C). For comprehensive details, refer to Table
(6) for the complete predicted results.
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B.
Residues in most favoured regions [A,B,L] 622  91.5%
Residues in additional allowed regions [ab,l.p] 57 8.4%
Residues in generously allowed regions [~a~b~l~p) 1 0.1%
Residues in disallowed regions 0 0.0%
Number of non-glycine and non-proline residues 680 100.0%

Number of end-residues (excl. Gly and Pro)

Number of glycine residues (shown as triangles)
Number of proline residues
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Fig. 6. A) The crystal structure of the human STAT4 protein B) Statistics of Ramachandran plot. The most favored,
additional allowed, generously allowed, and disallowed regions are colored in red, yellow, light yellow, and white

respectively. C) Model validation by QMEAN.

Table 6. The STAT4 gene structural identification and TM Score

ERRAT PROCHECK Verify TM Align
Templates Score Core Allow Generously Disallowed Score ™ RMSD
Score
Q14765.1.A 97.4926 91.50% 8.40% 0.10% 0.00% 72.33%
D668G 97.9885 96.50% 3.40% 0.10% 0.00% 71.66% 0.99881 0.33
G605R 95.8213 96.60% 3.40% 0.00% 0.00% 67.78% 0.99892 0.31
L597S 95.5137 96.30% 3.70% 0.00% 0.00% 69.52% 0.99893 0.31
C539Y 97.4063 96.20% 3.80% 0.00% 0.00% 71.39% 0.9988 0.33
M517R 95.279 95.90% 4.10% 0.00% 0.00% 70.19% 0.99886 0.32
R508H 95.1498 96.60% 3.40% 0.00% 0.00% 72.06% 0.99883 0.32
R508C 95.8333 96.60% 3.40% 0.00% 0.00% 70.32% 0.9988 0.33
N471H 97.971 95.90% 4.10% 0.00% 0.00% 70.45% 0.99882 0.32
P450A 96.4235 95.70% 4.30% 0.00% 0.00% 71.39% 0.99895 0.31
T336S 95.9302 96.30% 3.70% 0.00% 0.00% 73.40% 0.99877 0.33
P331Q 95.8153 95.70% 4.30% 0.00% 0.00% 70.32% 0.9988 0.33
C323Y 97.2779 96.80% 3.20% 0.00% 0.00% 71.66% 0.99886 0.32
G248R 96.4183 95.30% 4.70% 0.00% 0.00% 71.66% 0.99894 0.31
D42G 97.3761 96.30% 3.70% 0.00% 0.00% 70.05% 0.99885 0.32
R31Q 95.8092 95.90% 4.10% 0.00% 0.00% 71.39% 0.9989 0.31

Molecular docking by PyRx

To

investigate ligand-protein  interactions,
molecular docking was performed using the
PyRx tool. All 19 selected ligands from the
PubChem database were docked with STATA4,
resulting in ten distinct conformations for each

ligand, characterized by their binding affinity (-
Kcal/mol) as depicted in Figure (7). The docking
results revealed that these binding affinities are
indicative of the compounds' activity levels, and
detailed affinities for all compounds can be
found in Supplementary Table (S2).
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The top compounds with strong binding
affinities, including Amphimedine, Emetine,
IND24, Loniflavone, Meridine, Neoamphimedine,
Palbociclib, Polyphenol, and Quercetin, were
selected for further investigation. These
compounds were then docked with both native
and mutated protein complexes. The interactions
were explored using Discovery Studio, which
provides a 2D representation of all docking
interactions. All of the chosen ligands had
binding free energies greater than -3 Kcal/mol.
The greatest binding energy revealed that the
STAT4 protein  successfully docked with
Loniflavone is -10.5 Kcal/mol. A Loniflavone
ligand was fixed in the STAT4 binding pocket

2023; 8(3): 86-91

sites by forming the conventional hydrogen bond
with residues LYS239, GLN140, GLN257,
LEU255, LEU131, LEU251, PRO250, GLY248,
GLY?249, ILE467, LEU332, ARG330, CYS323,
GLN321, ASN471; and hydrophobic interactions
(Alkyl, pi-alkyl, cation, anion, halogens) with
TRP238, GLY254, ASN253, HIS252, ARG?240,
GLN242, ARG241, ILE244, GLN243, CYS246,
ALA245, ILE247, TPR464, PRO331 residues.
Figure (7) depicts the interacting residues
obtained during docking. Table (7) shows the
differences in mutant and wild ligand-protein
residue interactions that indicate changed
functional properties caused by mutations.

Table 7. Molecular docking interaction between molecules of selected protein-ligand complexes.

Hydrogen Bond Interaction

Hydrophobic Interactions

LYS239, GLN140, GLN257, LEU255,
LEU131, LEU251, PRO250,
GLY248, GLY249, ILE467, LEU332,
ARG330, CYS323, GLN321,
ASN471
LEU255, GLY254, LYS239, LEU131,
PRO250, GLY248, GLY249, ILE247,
TRP464
LEU131, ARG240, GLY254,
ASN253, PRO331, GLY248, ILE247,

PRO250, LEU332, GLY248,
GLN243, ARG240, LEU131,
LEU255, ILE467

TRP238, GLY254, ASN253, HIS252,

ARG240, GLN242, ARG?241, ILE244,

GLN243, CYS246, ALA245, ILE247,
TPR464, PRO331

TRP38, LEU251, ASN253, HIS252,
ARG240, ARG241, GLN242, GLN243,
ILE244, ALA245, CYS246, PRO331
HIS252, TRP238, LEU251, ARG241,
GLN242, GLN243, ILE244, ALA245,
CYS246
GLY254, ASN253, HIS252, TRP238,
LEU251, ARG241, ILE247, PRO331,
ALA245, CYS246, TRP464

LYS239, GLN140, GLN257, LEU255,
LEU131, LEU251, PRO250,
GLY248, GLY249, ILE467, LEU332,
ARG330, CYS323, GLN321,
ASN471
ASN253, LEU131, ARG240,
ASN471, GLY248, TRP464, PRO331

GLN321,LEU332, LEU131, TRP464,
ILE467, GLY248, GLY249, ASN471,
ARG240, ASP237, LEU255,
GLY254, GLU319
LEU255, GLY254, LYS239, LEU131,
PRO250, GLY248, GLY249, ILE247,
TRP464

TRP238, GLY254, ASN253, HIS252,

ARG240, GLN242, ARG241, ILE244,

GLN243, CYS246, ALA245, ILE247,
TPR464, PRO331

LEU251, HIS252, ARG241, ALA245,
GLN242, GLN243. ILE244, ILE247,
CYS246
PRO331, TRP238, CYS246, ILE247,
GLN243, ILE244, ALA245, ARG?241,
GLN242, LEU251, HIS252, ASN253

TRP238, LEU251, ASN253, HIS252,
ARG240, ARG241, ALA245, GLN242,
GLN243, CYS246, ILE244, PRO331

Protein Ligand Docking Score
(-Kcal/mol)

Wwild Loniflavone -10.5

PolyPhenols -10.1

Meridine -9.6

IND24 -9.6

D668G Loniflavone -10.6

Amphimedine -10.1

Palbociclib 9.1
Polyphenol -9

C539Y Loniflavone -10.6
Meridine -9

LYS239, GLN140, GLN257, LEU255,
LEU131, LEU251, PRO250,
GLY248, GLY249, ILE467, LEU332,
ARG330, CYS323, GLN321,
ASN471
LEU131, ARG240, GLY254,
ASN253, PRO331, GLY248, ILE247,

PSM Biol Res | https://journals.psmpublishers.org/index.php/biolres

TRP238, GLY254, ASN253, HIS252,

ARG240, GLN242, ARG?241, ILE244,

GLN243, CYS246, ALA245, ILE247,
TPR464, PRO331

HIS252, TRP238, LEU251, ARG241,

GLN242, GLN243, ILE244, ALA245,
CYS246
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GLN140, PRO250, ILE467, LEU332,
GLY248, ARG240, LEU131, LEU255

ASN253, GLY254, LEU131,
ARG240, ASN471, GLY248,
GLY249, PRO331

2025; 8(1): 79-102

PRO331, TRP464, CYS246, ILE247,
GLN243, ARG241, LEU251, TRP238,
ALA245, HIS252, ASN253, GLY254
LEU251, HIS252, ARG241, ALA245,
GLN242, GLN243. ILE244, ILE247,
CYC246

GLN140, GLN257, LEU255, LYS239,
LEU131, LEU251, PRO250,
GLY248, GLY249, ILE467, ASN471,
GLN321, ARG330, LEU332, CYS323
LEU131, ARG240, ASN471,
PRO331, GLY248, TRP464

ILE267, LEU332, GLY248, GLN243,
PRO250, GLN140, ARG240,
LEU131, LEU255
GLN140, PRO250, GLN132,
ARG320, GLY254, ARG241,
GLU319, LYS239, ARG240,
LEU449, GLN321, ASN471, VAL497,
TRP500, GLY349, GLY248, TRP464

TRP238, GLY254, ASN253, HIS257,
ARG240, ARG241, GLN242, GLN243,
ILE244, CYS246, ALA245, ILE247,
TRP464, PRO331
TRP238, HIS252, ARG241, GLN242,
ALA245, ILE244, LEU251, GLN243,
ILE247, CYS246,

PRO331, ILE247, TRP464, CYS246,
ALA245, ARG241, LEU251, TRP238,
HIS252, ASN253, GLY254,
ASN253, HIS252, LEU251, TRP238,
ILE244, GLN243, GLN242, ALA245,
CYS246, PRO331

ILE2467, LEU332, GLY248,
PRO250, GLN140, ARG240,
LEU131, LEU255

GLN240, GLN257, LEU255, LYS239,
LEU251, LEU131, PRO250,
GLY249, GLY248, ILE467, ASN471,
GLN321, CYS323, ARG330, LEU332
ASN253, LEU131, ARG240,
ASN471, GLY248, TRP464, PRO331

LEU332, TRP464, ILE467, GLY248,
GLY249, ASN471, GLN321,
LEU131, ARG240, ASP237,
LEU255, GLY254, GLU319

PRO331, ILE247, GLN243, CYS246,
ILE244, GLN242, ARG241, LEU251,
TRP238, GLY254, ASN253, HIS252

TRP238, GLY254, ASN253, HIS257,
ARG240, ARG241, GLN242, GLN243,
ILE244, CYS246, ALA245, ILE247,
TRP464, PRO331
TRP38, LEU251, HIS252, ARG241,
GLN242, ILE244, ALA245, CYS246,
ILE247, GLN243,

TRP238, PRO331, CYS246, ILE247,
GLN243, ILE244, ALA245, ARG241,
GLN242, LEU251, HIS252, ASN253

GLN140, GLN257, LEU255, LYS239,
LEU131, LEU251, PRO250,
GLY248, GLY249, ILE467, ASN471,
GLN321, ARG330, LEU332, CYS323
GLN331, LEU332, TRP464, ILE467,
GLY248, GLY249, ASN471,
GLN321, LEU131, ARG240,
ASP237, LEU255, GLY254, GLU319
ASN253, TRP238, ILE244, LEU131,
LEU332, LEU449, GLY248, GLY249,
GLN243, GLN321,

ILE467, LEU332, GLN331, GLY248,
GLN243, ARG240, LEU131,
PRO250, GLN140, LEU255

TRP238, GLY254, ASN253, HIS252,
ARG240, GLN242, ARG241, ILE244,
GLN243, CYS246, ALA245, ILE247,
TPR464, GLN331
CYS246, ILE247, GLN243, ILE244,
ALA245, GLN242, ARG241, LEU251,
TRP238, HIS252, ASN253,

HIS252, LEU251, ARG241, GLN242,
ALA245, CYS246, ILE247,

TRP464, ILE247, CYS346, ILE244,
GLN242, ARG241, LEU251, TRP238,
HIS252, GLY254, ASN253, ALA245

IND24 -8.9
Neoamphimedine -8.9
R508C Loniflavone -11
Amphimedine -8.6
IND24 -85
Emetine -84
T336S IND24 -9.5
Loniflavone -9.2
Amphimedine -9
Palbociclib -9
P331Q Loniflavone -8.9
Palbociclib -85
Quercetin -8.4
IND24 -8.3
DISCUSSION

Generally, SNPs represent genetic variations
caused by a single nucleotide alteration in a
genome sequence. While some SNPs are
multiallelic, the vast majority are bi-allelic, with
two different bases present at a single DNA
location. Such variants must have a minimum

probability level in the population to be classified
as SNPs, which is often greater than 1%
(Vallejos-Vidal et al., 2020). Considering that
nsSNPs are identified by a single amino acid
mutation inside the coding regions, resulting in
genetic disorders. Recent research has focused
substantially on nsSNPs, and large amounts of
data are available in public repositories like as
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the dbSNP NCBI, Ensembl, and GnomAD
databases (Subbiah et al., 2023).
Polymorphisms are recognized as potentially
valuable biomarkers for disease detection or
prognostic due to their high frequency,
accessibility, low genotyping costs, and capacity
to conduct association research utilizing
analytical and computational methods
(Srinivasan et al., 2016). The latest study has
associated STAT4 mutations with the
transmission of HBV and HCC malignancy (Shi
et al.,, 2019). Hepatitis comprises a major
mammalian viral infection that causes a variety
of serious and persistent complications of liver
function (Li et al., 2019). Multiple studies have
examined the link between STAT3 (rs1053004,
rs2293152) and STAT4 (rs7574865) variants
with the possibility of HBV and chronic HCC in
different ethnic groups; however, the outcomes
remain unclear and inconsistent (Liao et al.,
2014; Shi et al., 2019). The function of a protein
is closely linked to its tertiary framework, and
any modification in the order of amino acids may
impact its structure, leading to diseases.

The purpose of this study was to use
bioinformatics tools to discover potentially
detrimental nsSNPs in the STAT4 gene, as well
as to investigate the negative nature of STAT4
mutational changes. Using in-silico tools to
assess genetic variants in STAT4 will allow for
larger-scale research and the discovery of
targeted treatments for associated diseases. It is
preferable to use multiple tools and get an
agreement by comparing results from various
sources. Additionally, bioinformatics innovations
should be validated in the laboratory using a
variety of in-vitro and in-vivo techniques. Using
the SNPNexus tool, 4749 SNPs in the human
STAT4 gene were predicted in the present
study. The SIFT and Polyphen both chose 28
nsSNPs for additional In-Silico research. Table
(1) has complete information about STAT4
protein. As indicated in Table (2), a stepwise
analysis was performed to determine the
functional consequences of damaging SNPs in
the STAT4 gene using SIFT > Polyphen >PPh 2
>Predict SNP>Mutpred2, and PANTHER. Three
servers, SNP& GO, Meta SNP, and SuSpect,
were applied to find disease-associated nsSNPs
with a strong potential influence on the STAT4
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protein. The K343Q (rs1274749529) and P325L
(rs1424401939) mutations have a higher impact
on protein stability, according to MU Pro. Out of
28 nsSNPs, i-stable found 11 nsSNPs to
increase protein stability while 32 nsSNPs were
shown to decrease protein production. The
CUPSAT server study found that 8 mutations
were stabilizing, whereas the DynaMut server
calculated that 24 were destabilizing. Studies
have suggested that certain SNPs may affect
the activity of the STAT4 protein and its ability to
regulate immune responses, thus contributing to
disease susceptibility.

The mutations N471H, D476Y, and N479S in the
STAT4 gene have been shown to potentially
influence immune function and the regulation of
T-cell responses, making individuals more
susceptible to Multiple Sclerosis (MS) and
Crohn's disease by altering the function of the
STAT4 protein, disrupting cytokine signaling
pathways and affecting immune cell recruitment,
which plays a key role in the development of
these conditions. Additionally, the R240W and
R241Q mutations in STAT4 have been
investigated for their association with diseases
such as Systemic Lupus Erythematosus (SLE)
and Rheumatoid Arthritis (RA), suggesting that
variations in STAT4 can have broad implications
for immune-mediated disorders (Beltran
Ramirez et al., 2016; Bravo-Villagra et al., 2024;
Nageeb et al., 2018).

The structural assessments suggest that the
mutations identified, particularly those linked to
methylation and glycosylation modifications,
could significantly influence the STAT4 protein's
function and stability. The STAT4 target gene
association network was built using GeneMANIA
and the InBio Discover platform. The SNPs
R240W, R241Q, P240A, N471H, N479S, and
D476Y produced a clustered mutation (colored
red) that typically correlates with tumors in
humans, as represented by Mutation 3D. The
PTM analysis showed that mutations such as
R508H and R508C, which are associated with
methylarginine, could potentially disrupt the
protein regulatory functions, while the N-linked
glycosylation at N471H may affect its stability
and interactions, contributing to pathogenicity.
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Using 13 computational tools, we found that 15
nsSNPs are highly detrimental to the STAT4
protein. The quality and validity of the STAT4 3D
model confirmed through SWISS-MODEL and
SAVES, offer confidence to the structural
predictions, highlighting the potential impacts of
these mutations. The high RMSD values for
mutants like D668G, C539Y, R508C, T336S,
and P331Q indicate substantial structural
deviations, which may disrupt normal protein
function. The docking analysis further revealed
that these mutations might alter STAT4 binding
affinity with its ligands, suggesting functional
consequences. Moreover, docking compounds
with both natural and mutant STAT4 proteins
revealed potential therapeutic candidates, with
interactions depicted in 2D models offering
promising avenues for drug development
targeting the mutant STAT4 form.

This study provides a comprehensive In Silico
evaluation of functional and structural nsSNPs in
the STAT4 protein, contributing new insights to
the understanding of these mutations. Further
research should be conducted to validate the
conclusions of this study and explore the
potential clinical implications of STAT4
mutations in different populations. Furthermore,
functional and structural studies are needed to
explain the potential mechanisms behind the link
between nsSNPs  and HBV  disease
susceptibility. The use of bioinformatic
approaches for assessing STAT4 genetic
variations will aid in the planning of large-scale
investigations and the development of targeted
therapeutics for diseases caused by these
variations. The fact that individual network
knowledge remains elusive could be attributed to
genetic, technical, and computational problems
that biological networks of a specific disease
continue to encounter. The findings of the study
could be useful in the study of prospective
therapies and diagnostic methods that require
both mutational confirmation and substantial
experimental studies. Further experiments could
include functional assays such as luciferase
reporter assays to assess the impact of selected
nsSNPs on STAT4 gene expression and activity.
Additionally, in vitro studies using cell lines could
help evaluate the effect of these mutations on
immune cell signaling, cytokine production, and
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the response to HBV infection. Moreover, in vivo
studies using animal models of HBV infection
could be conducted to observe how these
mutations influence disease progression. Finally,
genotype-phenotype association studies in
diverse human populations could strengthen the
findings and clarify the role of these nsSNPs in
HBV susceptibility.

CONCLUSION

A STAT is a transcription variable that stimulates
the transcription of genes in response to a
variety of distinct cytokines. The purpose of the
study was to discover potentially damaging
nsSNPs in the STAT4 gene using bioinformatics
tools to investigate the destructive nature of the
mutational alterations in the STAT4 gene.
According to the trajectory analysis and stepwise
prediction of Deleteriousity of nsSNPs
(SNPNexus > Predict SNP> PPh2> PANTHER>
SNP & GO> Dynamut2> Meta SNP> iStable>
SNP & GO), 13 nsSNPs with a mutational
influence on the STAT4 function and structure
were shown to be extremely detrimental. Using
the SWISS Model, we built a 3D model of the
STAT4 and refined it with ERRAT and
PROCHECK programs, and the findings
demonstrate that it is reliable. The STAT4
model is also used for docking with ligand
compounds. The D668G, C539Y, R508C,
T336S, and P331Q variants were docked with
chosen drugs with significant binding affinities
such as Amphimedine, Emetine, IND24,
Loniflavone, Meridine, Neoamphimedine,
Palbociclib, Polyphenol, and Quercetin and
docked with native and mutant structures and
visualized by Discovery studio. Based on the
findings of this study, future genome association
studies will be able to identify perilous nsSNPs
linked to specific HBV patients. The results imply
that utilizing computational approaches to
determine target nsSNPs can be a viable
alternative option. The previously mentioned
non-reported nsSNPs can be confidently
regarded as important contributors to HBV-
related diseases. Wet lab tests are required to
determine the specific effects of these nsSNPs
on the protein's structure and function. Finding
phenotypic or disease-related variation through
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genomic research is a challenging scenario that
necessitates innovative approaches.
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