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Abstract: 
Hepatitis B virus (HBV) remains a significant global health challenge, with an 
estimated 257 to 350 million individuals living with chronic HBV infection worldwide. 
Based on the results of genome-wide association studies (GWAS), the STAT4 gene 
was identified as a viable target for further study into its association with HBV-
related liver diseases. The STAT4 signaling pathway is renowned for its critical role 
in interferon gamma-mediated antiviral response, emphasizing its importance in 
HBV infection. The present study employed bioinformatics tools to discover 
potentially damaging nsSNPs and assess the negative consequences of STAT4 
gene mutations. The structural prediction, template refinement, and blind protein-
ligand docking studies were assessed using various computational approaches to 
gain a comprehensive understanding of the functional consequences of the STAT4 
gene mutations. From a total of 4749 nsSNPs obtained from the NCBI database, 15 
missense SNPs were recognized as detrimental by 13 different bioinformatic tools, 
including SNPnexus>PolyPhen-2>Predict SNP>Mutpred2>PANTHER>SNP& 
GO>Meta SNP, and SuSpect, among others. Protein stability was assessed using 
iStable, Mu Pro, CUPSAT, and Dynamut2 databases. The InBio Discover tool was 
used to study protein interactions, while the GeneMANIA tool was used to 
investigate gene-gene interactions. Mutation 3D and PTM sites were assessed to 
confirm SNPs' detrimental nature. To validate nsSNPs such as D668G 
(rs751205891), C539Y (rs774187563), R508C (rs780829180), T336S 
(rs770753645), and P331Q (rs1248978329), protein modeling, structural validation, 
and protein-ligand interaction studies were performed.  These nsSNPs could serve 
as targets for future STAT4-related disease research. Despite the inherent 
drawbacks of computational tools, the studies executed in the present work provide 
valuable perceptions and may serve as a resource for future in vitro and in vivo 
studies on STAT4's involvement in the immune response to HBV infection. 

 

 

 

 

 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://psmjournals.org/index.php/ijmm/about/submissions
https://psmjournals.org/index.php/ijmm/about/submissions


International Journal of Molecular Microbiology                                                                2025; 8(1): 79-102 

80 
 

INTRODUCTION 

The intricate distinction between phenotype and 

genotype is a key difficulty in studying genomics. 

The primary concern is identifying genetic 

polymorphism linked with human hereditary 

disorders, which remains a target in human and 

medical genomics. DNA variations are genetic 

biomarkers, and substantial research efforts 

have focused on elucidating the interactions 

between genetic mutations and their associated 

phenotypic effects (Claussnitzer et al., 2020; 

Kumar et al., 2022). A Single Nucleotide Variant 

(SNV) is a broader term that refers to any 

variation in a single nucleotide (A, T, C, or G) in 

the genome, which may occur anywhere in the 

genome, including coding regions, non-coding 

regions, or intergenic regions (Dou et al., 2024). 

Single-nucleotide polymorphism (SNP) is a 

specific type of SNV that is common within a 

population. To be classified as an SNP, the 

variant must occur in at least 1% of the 

population (Naranjo-Galvis et al., 2023). 

Missense or non-synonymous (nsSNPs) 

mutation involves a substitution of amino acid 

sequences and is involved in many inherited 

disorders; not all nsSNPs are harmful. Many 

nsSNPs are neutral or have no significant effect 

on protein function. The impact of an nsSNP 

depends on factors such as its location in the 

protein, the properties of the substituted amino 

acid, and the specific role of the protein in 

biological processes (Emadi et al., 2020). 

These nsSNPs have the potential to negatively 

impact protein composition, stability, and activity 

(Lander, 1996; Ng and Henikoff, 2002) by 

altering the charge, form, hydrophobicity, protein 

synthesis, and interaction between proteins 

(Collins et al., 1998; Kucukkal et al., 2015). 

Humans have made tremendous progress in 

revealing hundreds of millions of SNPs that were 

linked to complex clinical problems and 

phenotypic features associated with an array of 

well-known disorders (Arshad et al., 2018; 

Krawczak et al., 2000). Multiple analyses have 

shown that nearly half of all genetic aberrations 

correspond to at least one type of variation 

(Radivojac et al., 2010). Over a decade, 

genome-wide association studies (GWAS) had 

an immense effect on the research of major 

hereditary diseases, revealing several important 

contrasts between various mammalian traits and 

pathologies (Tam et al., 2019). Studies have 

identified an association between the Signal 

transducer and activator of transcription 4 

(STAT4) mutations and an increased risk of 

hepatitis B virus, also known as HBV, and 

hepatocellular tumor genesis (Shi et al., 2019). 

The STAT4 signaling cascade has significance 

for interferon gamma-mediated antiviral 

responses (Lu et al., 2015). Prior studies in 

varied ethnic communities have looked at the 

impact of the STAT4 variant (rs7574865 ) on 

HBV-induced hepatocellular carcinoma (HCC) 

incidence (Li et al., 2019).  

Hepatitis B virus (HBV) remains a significant 

global health challenge, with an estimated 257 to 

350 million individuals living with chronic HBV 

infection worldwide (Tan et al., 2021). Despite 

the availability of effective HBV vaccines since 

1982, the disease continues to have a high 

prevalence, particularly in Africa and the 

Western Pacific, including China (Zeng et al., 

2021). The global prevalence of Hepatitis B 

surface antigen (HBsAg), a key indicator of HBV 

infection, is estimated to be around 3.6%, with 

endemic areas experiencing the highest burden 

(Sheena et al., 2022). Recent studies have 

explored the correlation between the STAT4 

mutation (rs7574865) and the progression of 

HBV in individuals with persistent infection. 

However, the findings of such studies were 

conflicting and untrustworthy (Liao et al., 2014; 

Shi et al., 2019). Furthermore, HBV transmission 

and HCC development are complex events 

involving numerous mutations in a variety of 

biological processes (Jiang et al., 2021). 

The activity of STAT4 in HBV infection is thought 

to promote the production of Th1 and Th2 

cytokines, leading to increased hepatic 

inflammation (Wang et al., 2014). The STAT4 

gene (SLEB11 and DPMC), located on 

chromosome 2q32.2-q32.3, encodes a 748-

amino-acid protein critical for the Janus kinase 

(JAK)-STAT pathway (Qi et al., 2022). This 

pathway influences immune cell activation and 

response to therapies like IFN-alpha, making 

STAT4 mutations relevant to understanding 

clinical variability in chronic HBV treatment 
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outcomes. Given the role of STAT4 in hepatic 

inflammation and immune regulation, its 

mutations may influence susceptibility to HBV 

infection and disease progression (Jiang et al., 

2016). The identification of functional mutations 

in a disease-related gene is a substantial issue 

that frequently necessitates examining a large 

number of SNPs in an ideal genome. The 

present study was undertaken to identify 

potentially damaging nsSNPs using 

computational methods and to evaluate the 

damaging nature of mutational variations in the 

human STAT4 gene. Using In-Silico tools to 

analyze STAT4 variations seeks to foster large-

scale investigations and the invention of 

personalized therapies for diseases associated 

with these variants. Additionally, the study 

examines the discovery of possible drug targets 

and their related binding interactions with 

ligands, to address the future STAT4 challenges. 

The future challenges of STAT4 research in 

HBV include understanding its role in antiviral 

immunity and liver inflammation, as it regulates 

cytokine responses critical to HBV clearance. 

Identifying damaging nsSNPs in STAT4 

associated with impaired immune responses 

could help develop personalized therapies. 

Additionally, designing specific inhibitors or 

modulators to balance STAT4 activity without 

exacerbating liver damage remains a significant 

therapeutic challenge. 

MATERIALS AND METHODS  

Data retrieval  

The genomic details, including gene names, 

aliases, HGNC ID, NCBI accession number, 

ENSEMBL ID, genomic coordinates, gene type, 

transcript counts, variation counts, UniProtKB 

ID, reference sequence status, and gene 

expression was obtained from various 

databases such as  NCBI 

(https://www.ncbi.nlm.nih.gov/gene), ENSEMBL 

(http://asia.ensembl.org), HGNC 

(https://www.genenames.org), and Gene Card 

(https://www.genecards.org). Figure (1) shows 

the entire workflow of the present study. The 

data for the human STAT4 gene and its 

sequence in FASTA format were gathered from 

the NCBI database (Katsaouni et al., 2023; 

Rozario et al., 2021). The ENSEMBL and NCBI 

databases were used to extract STAT4 gene 

variants.  These variations were validated further 

using the dbSNP database 

(https://www.ncbi.nlm.nih.gov/snp) (McLaren et 

al., 2016). The collected SNP results were saved 

as a standard comma-separated values (CSV) 

Excel file (Azmi et al., 2023). 

 

 

 

Fig. 1. A visual representation showing different computational tools employed in the current study.

  

https://www.ncbi.nlm.nih.gov/gene
http://asia.ensembl.org/
https://www.genenames.org/
https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/snp
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Evaluating deleterious effects of protein-

coding SNPs 

To explore the functional consequences of 

damaging SNPs, SIFT>Polyphen>PPh2>Predict 

SNP>Mutpred2> PANTHER were used (Rozario 

et al., 2021). These confirmed the precision of 

our findings, and we categorized such SNPs as 

high-risk as they were predicted to be 

detrimental (Hossain et al., 2020). For 

SNPNEXUS (https://www.snp-nexus.org), an 

integrated program that include Sorting 

Intolerant from Tolerant (SIFT) and 

Polymorphism Phenotyping (PolyPhen) is 

accessible (Hasnain et al., 2020). The SIFT 

algorithm assigns a probability score to assess 

their deleteriousness. SNPs with a probability 

score below 0.05 are considered detrimental, 

whereas those with a probability score equal to 

or greater than 0.05 are tolerated (Honnalli and 

Adiga, 2023). PolyPhen results are classified as 

benign, probably and possibly detrimental and a 

score of 1 has a detrimental effect on the protein 

(Hasnain et al., 2020; Jahandideh and Zhi, 2014; 

Mahmud et al., 2016). The common nsSNPs 

from SIFT and Polyphen were evaluated for the 

present study. PolyPhen2 (PPh2) is available at 

https://genetics.bwh.harvard.edu/pph2, and it 

predicts the consequence of an amino acid 

change based on certain empirical principles on 

its sequence (Mahmood et al., 2021).  

The input query, which comprised both wild and 

substituted amino acid sites, was submitted in 

FASTA format. The substitution is assessed as 

probably, possibly damaging, or benign, with 

scores ranging from 0 (benign) to 1 (damaging) 

and based on position-specific independent 

score differences, with 1 being the most 

deleterious (Adzhubei et al., 2013). The 

PANTHER tool can be found at 

https://www.pantherdb.org, which examines 

substitutions using position-specific evolutionary 

conservation scores computed from the 

alignment of several proteins (Ahmad et al., 

2023). The most predicted mutations were 

further examined by the MutPred2 web server 

(http://mutpred.mutdb.org) to sort out deleterious 

or neutral variations in the protein sequence 

(Pejaver et al., 2020). The PredictSNP online 

tool (https://loschmidt.chemi.muni.cz/predictsnp) 

collects input data from several tools to estimate 

the impact of an amino acid substitution 

(Mohkam et al., 2022) and provides a consensus 

prediction with higher accuracy and precision 

(Girmay et al., 2022). 

Forecasting disease-linked nsSNPs 

Using protein functional annotations, SNPs & 

GO determines whether a genetic variant is 

associated with disease and the tool is available 

at https://snps.biofold.org/snps-and-go/snps-

and-go.html (Capriotti et al., 2017). To offer 

more details regarding the impact of mutations 

on a protein sequence, we used the SuSPect 

web server (http://www.sbg.bio.ic.ac.uk/suspect) 

to determine whether a protein residue is prone 

to deleterious mutations (de Souza Albuquerque 

et al.), and provide results that range from 0 

(neutral) to 100 (deleterious) (Ittisoponpisan and 

Jeerapan, 2021). Meta-SNP are  available at 

http://snps.biofold.org/meta-snp, a web-based 

tool that forecasts the impact of SNPs using the 

support vector machine method (Jabuk and 

Jaralla, 2023). It was optimized to forecast 

disease-associated point mutations and scored 

with > 0.5 identifying Deleterious variants 

(Capriotti et al., 2013). 

Analysis of protein stability 

I-Stable (http://predictor.nchu.edu.tw/iStable) is 

an integrated tool for evaluating protein stability 

variations in a protein sequence. The use of 

meta-predictions to improve results in either 

increasing or decreasing protein stabilities (Chen 

et al., 2013). MU Pro 

(http://mupro.proteomics.ics.uci.edu) evaluates 

amino acid variations and generates a DDG 

value with a score less than 0 showing that the 

mutation reduces protein stability and a score 

greater than 0, implying the variation increases 

protein stability (Hasnain et al., 2020; Wang et 

al., 2020b). The selected nsSNPs were 

examined using the DynaMut2 server 

(https://biosig.lab.uq.edu.au/dynamut2). It 

displays the change in stability (G) calculated in 

kcal/mol, and a negative G value implies that the 

influence is destabilizing, whereas a positive 

number indicates that the effect is stabilizing 

(Rodrigues et al., 2021).  Cologne University 

https://www.snp-nexus.org/
https://genetics.bwh.harvard.edu/pph2
https://www.pantherdb.org/
http://mutpred.mutdb.org/
https://loschmidt.chemi.muni.cz/predictsnp
https://snps.biofold.org/snps-and-go/snps-and-go.html
https://snps.biofold.org/snps-and-go/snps-and-go.html
http://www.sbg.bio.ic.ac.uk/suspect
http://snps.biofold.org/meta-snp
http://predictor.nchu.edu.tw/iStable
http://mupro.proteomics.ics.uci.edu/
https://biosig.lab.uq.edu.au/dynamut2
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Protein Stability Analysis Tool (CUPSAT) 

available at https://cupsat.brenda-enzymes.org, 

is used to predict stable protein variations 

resulting from single amino acid mutations (Saini 

et al., 2018). The CUPSAT server is suitable for 

a broad spectrum of proteins with PDB or 

FASTA input formats (Choudhury et al., 2022). 

Gene–gene and protein-protein interactions 

The GeneMANIA server (https://genemania.org) 

used a large quantity of functional association 

data to build a biological network interaction 

involving the top 20 genes associated with our 

STAT4 gene (Mustafa et al., 2020). Using a 

massive store of biological correlation 

details may uncover new genes associated 

with a set of input genes (Baralić et al., 2022; 

Chetta et al., 2020). The InBio Discover 

platform, which can be found at https://zs-

revelen.com, was used to create a network of 

high-confidence protein-protein interactions 

(PPIs). It exploits the inBio-Map, an extensive 

overview of human protein biology with over 6 

million traceable entries. It is based on expected 

trustworthy networks that take scientific proof, 

pathways, and other curated data to provide 

helpful insights into the challenging landscape of 

cellular protein interface (Li et al., 2017).  

Identification of mutation clusters 

Mutation3D (http://mutation3d.org) is used for 

locating clusters of structural changes and offers 

the analysis of variants in a variety of forms, 

allowing for uniform access to mutation clusters 

derived from a massive dataset of over 975,000 

somatic variations reported by 6811 tumor 

genomic research. Users enter a protein of 

interest with related mutations, and the result is 

a protein model with its amino acid clusters. It is 

a useful tool for scholars studying the regional 

distribution and potential functional impact of 

mutations in protein structure (Meyer et al., 

2016). 

Estimating post-translational modifications 

(PTM) 

Understanding PTM data enables more 

knowledge of the disease association, etiology, 

and proteins that undergo covalent 

modifications. These entail the use of functional 

groups, such as phosphorylation, acetylation, 

methylation, or ubiquitination all are diverse 

types of PTMs (Hasan and Khatun, 2018).  

When amino acid sequences are submitted as 

input, MusiteDeep (https://www.musite.net) is 

the first deep-learning algorithm to predict 

phosphorylation sites (Wang et al., 2020a; Wang 

et al., 2017). PhosphoSitePlus (PSP), available 

at https://www.phosphosite.org, provides data 

for the study of mammalian PTMs, which 

contributes to a better understanding of the 

regulatory mechanisms in cellular processes 

(Ramazi and Zahiri, 2021). To limit the projected 

outputs of bioinformatic tools, we developed a 

criterion. Given the enormous number of 

nsSNPs, only the most probably damaging 

variants found by all 13 servers were used for 

further study, including protein modeling and 

protein-ligand interaction. 

Protein structure assessment and modeling 

For protein modeling, SWISS-MODEL 

(https://swissmodel.expasy.org) distinguishes 

itself as a completely computerized protein 

structural homology-modeling tool. It employs 

the UniProtKB database for precise target-

template alignment, enabling researchers to 

build homology models for specific proteins of 

interest (Rozario et al., 2021). As input queries, 

the FASTA format was submitted and visualized 

by the UCSF Chimera tool accessible at 

https://www.cgl.ucsf.edu/chimera (Verma et al., 

2023). Galaxy Refine is used to refine our 

predicted models and can be found at 

https://galaxy.seoklab.org/cgi-

bin/submit.cgi?type=REFINE. This tool improved 

the accuracy and quality of the structural models 

developed throughout our inquiry (Seok et al., 

2021). SAVES (https://saves.mbi.ucla.edu) has 

been used to validate the predicted protein 3D 

structure with a high stereochemical value of the 

Ramachandran plot, and the ProCheck proves 

the most favorable zones. The Ramachandran 

plot generated by the ProCheck program, with 

over 90% of residue in the most favorable 

regions, is considered good quality (Colovos and 

Yeates, 1993; Mahmud et al., 2016). The 

program TM-align (https://zhanggroup.org/TM-

align) was used for comparing the structures of 

https://cupsat.brenda-enzymes.org/
https://genemania.org/
https://zs-revelen.com/
https://zs-revelen.com/
http://mutation3d.org/
https://www.musite.net/
https://www.phosphosite.org/
https://swissmodel.expasy.org/
https://www.cgl.ucsf.edu/chimera
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://saves.mbi.ucla.edu/
https://zhanggroup.org/TM-align
https://zhanggroup.org/TM-align
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native and mutant proteins. It calculates the 

template modeling score (TM-score) and the 

root-mean-square deviation (RMSD) that ranges 

from 0 to 1, with 1 indicating perfect similarity 

between two structurally related components 

(Carugo and Pongor, 2001; Zhang and Skolnick, 

2004; Zhang and Skolnick, 2005). 

Protein-Ligand docking analysis  

To investigate the consequences of deleterious 

nsSNPs on STAT4 binding affinity, we used a 

molecular docking method with the PyRx virtual 

screening tool available at 

https://pyrx.sourceforge.io (Ebrahim et al., 

2022). We built a suitable target protein from the 

STAT4 structure coupled with active protein. The 

active variables were fixed as the grid size of the 

center (XYZ axis) to dock the ligands, with the 

10 highest exclusive computed for each ligand. 

The PDB files of the ligands and proteins were 

converted to PDBQT format using the Auto Dock 

tools (Ferrari and Patrizio, 2021). The molecular 

structure of the ligand molecules was retrieved 

from PubChem available at 

http://pubchem.ncbi.nlm.nih.gov (Singh et al., 

2021). The docking result and binding interaction 

between ligand and receptor proteins were 

displayed using Discovery Studio Visualizer 

software (https://discover.3ds.com/discovery-

studio-visualizer-download) and  PyMOL 

(https://pymol.org/2) (Shukla et al., 2023). 

RESULTS  

Screening of nsSNPs 

The dataset classifies 4749 SNPs associated 

with the STAT4 gene based on their genomic 

location and functional type. Of these, 2500 

SNPs are found in the coding regions, with 619 

exonic SNPs, including 358 synonymous 

mutations and 692 non-synonymous mutations, 

which may have a more significant impact on 

protein function. The remaining 2250 non-coding 

SNPs are primarily distributed in intronic regions, 

58 SNPs are located in untranslated regions 

(UTRs), with 56 in the 3' UTR and 2 in the 5' 

UTR. There are also 122 SNPs in the 5' 

upstream region and 650 in the 3' downstream 

region. 

Moreover, Table (1) presents the STAT4 protein 

information. For further in silico analysis, 

missense or Nonsynonymous SNPs (nsSNPs) 

were selected and predicted by SIFT and 

Polyphen. Table (2) provides detailed 

information on all the nsSNPs, while Figure (2) 

visually represents the percentage distribution of 

all SNPs. Subsequently, additional criteria were 

employed to distinguish between disease-

causing harmful SNPs and missense SNPs with 

unknown significance. 

 

 
 

Fig. 2. The distribution of all SNPs in the human STAT4 gene. 

https://pyrx.sourceforge.io/
http://pubchem.ncbi.nlm.nih.gov/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://pymol.org/2
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Table 1. STAT4 proteins retrieve information. 

Description Protein Information 

Recommended name Signal Transducer And Activator Of Transcription 4 (STAT4) 

Amino Acids 748 

Gene ID 6775 

Ensembl ID ENSG00000138378  

Location 2q32.2-q32.3 

Exon count 25 

NCBI Nucleotide NC_000002.12  

Base Pairs 191029576..191151596 

Mass (Da) 85941 

Primary accession Q14765 

Organism Homo Sapiens 

FASTA sequence >sp|Q14765|STAT4_HUMAN Signal transducer and activator of transcription 4 OS=Homo sapiens 

OX=9606 GN=STAT4 PE=1 SV=1 

MSQWNQVQQLEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDWEAASNNETMATILLQNL 

LIQLDEQLGRVSKEKNLLLIHNLKRIRKVLQGKFHGNPMHVAVVISNCLREERRILAAAN 

MPVQGPLEKSLQSSSVSERQRNVEHKVAAIKNSVQMTEQDTKYLEDLQDEFDYRYKTIQT 

MDQSDKNSAMVNQEVLTLQEMLNSLDFKRKEALSKMTQIIHETDLLMNTMLIEELQDWKR 

RQQIACIGGPLHNGLDQLQNCFTLLAESLFQLRRQLEKLEEQSTKMTYEGDPIPMQRTHM 

LERVTFLIYNLFKNSFVVERQPCMPTHPQRPLVLKTLIQFTVKLRLLIKLPELNYQVKVK 

ASIDKNVSTLSNRRFVLCGTNVKAMSIEESSNGSLSVEFRHLQPKEMKSSAGGKGNEGCH 

MVTEELHSITFETQICLYGLTIDLETSSLPVVMISNVSQLPNAWASIIWYNVSTNDSQNL 

VFFNNPPPATLSQLLEVMSWQFSSYVGRGLNSDQLHMLAEKLTVQSSYSDGHLTWAKFCK 

EHLPGKSFTFWTWLEAILDLIKKHILPLWIDGYVMGFVSKEKERLLLKDKMPGTFLLRFS 

ESHLGGITFTWVDHSESGEVRFHSVEPYNKGRLSALPFADILRDYKVIMAENIPENPLKY 

LYPDIPKDKAFGKHYSSQPCEVSRPTERGDKGYVPSVFIPISTIRSDSTEPHSPSDLLPM 

SPSVYAVLRENLSPTTIETAMKSPYSAE 

 

 

Identification of the effect of deleterious 

SNPs 

To evaluate the functional consequences of 

deleterious STAT4 nsSNPs, a sequential 

analysis was conducted using SIFT, Polyphen, 

PPh-2, Predict SNP, Mutpred2, and PANTHER. 

The SIFT and PolyPhen programs generated a 

bar graph distribution of SNPs, as shown in 

Figure (S1), to visually represent the predicted 

functional impacts of the identified missense 

mutations. Notably, 28 nsSNPs were identified 

as posing a high risk of affecting protein 

function. A detailed dataset for these 28 

commonly found nsSNPs is provided in Table 

(2). In PPh2 analysis, 27 nsSNPs were identified 

as potentially detrimental. The T177A 

(rs758709109) variant, among the 28 nsSNPs 

assessed, was anticipated to be highly possibly 

damaging, with a 0.995 PSIC score. Predict 

SNP analysis identified 24 SNPs as highly 

deleterious, while N479S, K343Q, R241Q, and 

T177A were deemed to have a neutral effect on 

the STAT4 protein, as detailed in Table (2). 

MutPred2 results indicated that 26 out of the 28 

nsSNPs were predicted to be deleterious to the 

STAT4 protein. The results showed prediction 

scores ranging from 0.945 to 0.502, with 

corresponding P values greater than 0.05, which 

suggests a likely deleterious impact on the 

protein. Notably, the L307F (0.325) and T177A 

(0.209) variants exhibited P scores less than 0.5. 

Utilizing the PANTHER tool, predictions were 

made regarding the influence of nsSNPs on 

protein function. For 26 nsSNPs, the estimated 

scores indicated a probability of adverse effects 

greater than 0.5. Additionally, two SNPs showed 

a possibly damaging prediction. 

Screening of disease-associated nsSNPs 

To identify disease-associated nsSNPs with 

significant potential to alter the structure or 

function of the STAT4 protein, SNP& GO, Meta 

SNP, and SuSpect tools were employed. Each 

algorithm utilizes distinct parameters to evaluate 

nsSNPs as disease-related or neutral. The SNP 

& GO algorithm highlighted 14 nsSNPs 

associated with the disease, while the remaining 

14 nsSNPs were classified as neutral. A 

summary of the prediction results is provided in 

Table (3). 

https://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000138378
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According to Meta-SNP, R70C, T177A, R241Q, 

and K343Q were predicted to have a neutral 

effect on the STAT4 protein, based on a 

prediction score threshold of <0.5 for neutrality 

and >0.5 for disease causation. In the case of 

the SuSpect Server, 25 nsSNPs were identified 

as highly disease-causing. However, three 

specific variants, D668G (rs751205891), G618A 

(rs776987023), and N479S (rs1376354446) 

were classified as neutral. The comprehensive 

details of these predictions are provided in Table 

(3). 

 

 

Table 2. Different computational tools confirmed detrimental nsSNPs. 

Variation ID Mutations 

SIFT Polyphen Polyphen2 Predict SNP Mutpred2 Panther 

S
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Prediction Score 
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) 
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ff
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P
d

e
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rs751205891 D668G 0 D 0.997 PD PD 1 D 0.828 PD 0.85 

rs776987023 G618A 0 D 0.998 PD PD 0.999 D 0.568 PD 0.74 

rs771192197 G605R 0 D 1 PD PD 1 D 0.945 PD 0.89 

rs770306554 L597S 0 D 1 PD PD 1 D 0.88 PD 0.85 

rs3024933 R584W 0 D 1 PD PD 1 D 0.698 PD 0.74 

rs774187563 C539Y 0 D 0.947 PD PD 0.997 D 0.682 PD 0.74 

rs1314004125 M517R 0 D 0.928 PD PD 0.99 D 0.852 PD 0.74 

rs376947712 R508H 0 D 0.909 PD PD 1 D 0.56 PD 0.85 

rs780829180 R508C 0 D 0.971 PD PD 1 D 0.633 PD 0.85 

rs1376354446 N479S 0 D 0.982 PD PD 1 N 0.506 PD 0.74 

rs759785386 D476Y 0 D 0.979 PD PD 0.998 D 0.632 PD 0.5 

rs1256812727 N471H 0 D 1 PD PD 1 D 0.81 PD 0.85 

rs544508292 P450A 0 D 0.998 PD PD 1 D 0.682 PD 0.89 

rs1274749529 K343Q 0 D 0.995 PD PD 1 N 0.759 PD 0.74 

rs770753645 T336S 0 D 0.988 PD PD 0.999 D 0.502 PD 0.85 

rs1248978329 P331Q 0 D 0.979 PD PD 0.996 D 0.739 PD 0.89 

rs1424401939 P325L 0 D 0.914 PD PD 0.998 D 0.666 PD 0.74 

rs1399751509 C323Y 0 D 1 PD PD 1 D 0.81 PD 0.74 

rs548245892 L307F 0 D 1 PD PD 1 D 0.325 PD 0.85 

rs764656850 G248R 0 D 1 PD PD 1 D 0.696 PD 0.85 

rs764990697 R241Q 0 D 0.995 PD PD 1 N 0.711 PD 0.74 

rs1280348818 R240W 0 D 0.997 PD PD 1 D 0.633 PD 0.85 

rs758709109 T177A 0 D 0.995 PD Possibly 0.569 N 0.209 PD 0.74 

rs751076320 R70L 0 D 0.97 PD PD 1 D 0.64 Possibly 0.5 

rs1468059700 R70C 0 D 0.995 PD PD 1 D 0.502 Possibly 0.5 

rs761161672 D42G 0 D 0.998 PD PD 1 D 0.79 PD 0.74 

rs1207353579 Q41E 0 D 0.973 PD PD 0.999 D 0.658 PD 0.74 

rs867270496 R31Q 0 D 0.996 PD PD 1 D 0.844 PD 0.85 

*D; Deleterious, N; Neutral, PD; Probably damaging. 
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Table 3. Screening of possible disease-causing nsSNPs of STAT4 gene. 

Variation ID Mutations 
SNPs & GO Meta SNP Suspect 

Effect RI Effect Score Prediction Score 

rs751205891 D668G Disease 0 Disease 2 Neutral 16 

rs776987023 G618A Neutral 4 Disease 1 Neutral 15 

rs771192197 G605R Disease 7 Disease 6 Disease 67 

rs770306554 L597S Disease 4 Disease 5 Disease 96 

rs3024933 R584W Disease 1 Disease 1 Disease 56 

rs774187563 C539Y Disease 6 Disease 5 Disease 53 

rs1314004125 M517R Disease 1 Disease 0 Disease 48 

rs376947712 R508H Disease 4 Disease 4 Disease 57 

rs780829180 R508C Disease 6 Disease 6 Disease 78 

rs1376354446 N479S Neutral 1 Disease 3 Neutral 24 

rs759785386 D476Y Disease 2 Disease 4 Disease 39 

rs1256812727 N471H Disease 4 Disease 7 Disease 65 

rs544508292 P450A Disease 2 Disease 4 Disease 82 

rs1274749529 K343Q Neutral 7 Neutral 6 Disease 35 

rs770753645 T336S Neutral 1 Disease 3 Disease 53 

rs1248978329 P331Q Neutral 1 Disease 4 Disease 77 

rs1424401939 P325L Neutral 3 Disease 0 Disease 38 

rs1399751509 C323Y Disease 0 Disease 4 Disease 49 

rs548245892 L307F Neutral 1 Disease 2 Disease 37 

rs764656850 G248R Disease 3 Disease 3 Disease 27 

rs764990697 R241Q Neutral 6 Neutral 7 Disease 22 

rs1280348818 R240W Neutral 1 Disease 2 Disease 46 

rs758709109 T177A Neutral 6 Neutral 6 Disease 28 

rs751076320 R70L Neutral 2 Disease 2 Disease 30 

rs1468059700 R70C Neutral 2 Neutral 1 Disease 46 

rs761161672 D42G Neutral 6 Disease 4 Disease 41 

rs1207353579 Q41E Neutral 6 Disease 1 Disease 51 

rs867270496 R31Q Disease 0 Disease 6 Disease 9 

 

 

Characterization of Protein Stability Changed 

by Mutations 

The structural impact of 28 potential nsSNPs 

was assessed using the Mu-Pro servers, and the 

findings related to protein stability are detailed in 

Table (4). Notably, MU Pro identified K343Q 

(rs1274749529) and P325L (rs1424401939) 

showing an increased impact on protein stability. 

According to i-stable, 11 nsSNPs were found to 

enhance protein stability, while 32 nsSNPs were 

associated with a reduction in protein 

expression, as indicated in Table (4). The 

CUPSAT server analysis revealed that 8 

mutations had a stabilizing effect, while 20 

NSSNPs were destabilizing. Furthermore, the 

DynaMut2 server was utilized to calculate 

general dynamic traits of the highest deleterious 

23 nsSNPs. Predictions for Δ entropy energy 

and ΔΔG by ENCoM, comparing the wild-type 

and mutant STAT4 protein, indicated that four 

mutants exhibited a stabilizing effect, while 24 

were destabilizing. A comprehensive overview of 

these structural assessments is presented in 

Table (4). 
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Table 4.  Protein Stability was analyzed by using MUpro, iStable, CUPSAT, and Dynamut2 

Variation ID Mutations 

Mu-Pro i-Stable CUPSAT DynaMut2 

Effect Score Stability Score Stability Score Stability 
Score 

(kcal/mol) 

rs751205891 D668G Decrease -1.7024511 Decrease 0.7138 Destabilizing -0.79 Destabilizing -0.41  

rs776987023 G618A Decrease -0.70397415 Increase 0.654043 Destabilizing -2.12 Destabilising -0.27  

rs771192197 G605R Decrease -1.0906461 Increase 0.676865 Destabilizing -0.08 Destablising -0.83  

rs770306554 L597S Decrease -2.2844317 Decrease 0.726237 Destabilizing -2.01 Destabilising -3.23  

rs3024933 R584W Decrease -0.6662067 Decrease 0.758422 Stabilizing 1.01 Stabilising 0.12  

rs774187563 C539Y Decrease -1.2030191 Decrease 0.731439 Stabilizing 2.54 Destabilising -0.79  

rs1314004125 M517R Decrease -1.0711499 Increase 0.568745 Destabilizing -2.75 Destabilising -0.79  

rs376947712 R508H Decrease -1.1683329 Increase 0.695355 Destabilizing -1.99 Destabilising -0.94  

rs780829180 R508C Decrease 0.90240299 Decrease 0.603023 Destabilizing -18.5 Destabilising -0.01  

rs1376354446 N479S Decrease -0.9309748 Decrease 0.7341 Destabilizing -0.43 Destabilising -0.11  

rs759785386 D476Y Decrease -0.5489519 Increase 0.750551 Destabilizing -1.39 Stabilising 0.37  

rs1256812727 N471H Decrease -0.9882099 Decrease 0.677074 Destabilizing -8.16 Destabilising -1.12  

rs544508292 P450A Decrease -1.2378193 Decrease 0.740649 Destabilizing -4.59 Destabilising -1.51  

rs1274749529 K343Q Increase 0.3000945 Increase 0.73934 Destabilizing -9.07 Destabilising -0.77  

rs770753645 T336S Decrease -0.395409 Decrease 0.641611 Destabilizing -3.54 Destabilising -1.09  

rs1248978329 P331Q Decrease -0.7923609 Decrease 0.778394 Destabilizing -7.82 Destabilising -1.1  

rs1424401939 P325L Increase 0.2452688 Increase 0.634104 Destabilizing -0.47 Destabilising -0.47  

rs1399751509 C323Y Decrease -0.5832999 Decrease 0.699872 Stabilising 2.81 Destabilising -0.85  

rs548245892 L307F Decrease -0.83214687 Decrease 0.803803 Destabilizing -0.35 Destabilising -1.51  

rs764656850 G248R Decrease -0.3619475 Decrease 0.685776 Destabilizing -1.35 Destabilising -0.87  

rs764990697 R241Q Decrease -0.8471517 Decrease 0.772587 Stabilising 0.86 Destabilising -0.7  

rs1280348818 R240W Decrease -0.5462583 Decrease 0.686031 Stabilising 3.35 Destabilising -1.14  

rs758709109 T177A Decrease -1.7647132 Decrease 0.672871 Stabilising 0.35 Destabilising -0.26  

rs751076320 R70L Decrease -0.2161614 Decrease 0.578442 Destabilizing -1.48 Stabilising 0.45  

rs1468059700 R70C Decrease -0.7118859 Decrease 0.592308 Destabilizing -1.71 Stabilising 0.2  

rs761161672 D42G Decrease -1.4731837 Decrease 0.692628 Destabilizing -0.89 Destabilising -0.04  

rs1207353579 Q41E Decrease -1.0127879 Decrease 0.705554 Stabilising 0.95 Destabilising -0.01  

rs867270496 R31Q Decrease -1.0198301 Decrease 0.763682 Stabilising 1.2 Destabilising -1.54  

 

 

Gene-gene and PPIs Analysis  

GeneMANIA was employed to construct the 

gene-gene interaction network for the STAT4 

target gene along with the closest 20 genes, as 

illustrated in Figure (3A). The detailed interaction 

data can be found in Supplementary Table (S1). 

To gain a more comprehensive understanding, a 

network of Protein-Protein Interactions (PPIs) 

was also constructed using the inBio-Map 

resource, as depicted in Figure (3B). This PPI 

network prediction identified 26 interacting 

proteins and a total of 116 interactions. This 

approach helps unravel the complex web of 

interactions among proteins associated with 

STAT4, providing insights into its potential 

functional relationships within cellular pathways. 
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Fig. 3. A) Gene-Gene interaction and B) PPI interface network for STAT4 protein identified in Bio-Discover. Network 

correlations are shown as blue lines. 

 

 

3D visualization of STAT4 mutation 

To visualize the locations of the 28 nsSNPs on 

the STAT4 protein, the outputs from the 

Mutation3D server were loaded onto PyMol 

software. The result gives a 3D representation of 

the human STAT4 protein (Figure 4), wherein 

the mutated residues were highlighted in red. 

The R240W, R241Q, P240A, N471H, N479S, 

and D476Y nsSNPs formed a clustered mutation 

(colored red), meanwhile, the remaining 22 

SNPs were represented as scattered mutations 

(colored blue). This visualization provides a clear 

spatial representation of the distribution of these 

mutations within the STAT4 protein structure. 

 

 

     
 

Fig. 4. Mutation3D predicted structural modeling of variant sites in STAT4 protein. 

 

 

Prediction of post-translational modification 

The Musite-deep server was employed to predict 

post-translational modification sites associated 

with our candidate SNPs. Protein sequences in 

FASTA format were submitted as input, and the 

results revealed that only R508H and R508C 

were associated with methylarginine. Notably, N-
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linked glycosylation at N471H was examined, as 

outlined in Table (5). Moreover, Phosphosite 

Plus analysis exposed phosphorylation and 

ubiquitylation events on the STAT4 gene, as 

illustrated in (Figure 5). This information 

provides insights into potential PTM 

modifications that may influence the functionality 

of the STAT4 protein. Figure (S2) illustrates the 

15 high-risk nsSNPs identified as detrimental to 

the structure and/or function of the STAT4 

protein. This analysis was conducted using 13 in 

silico tools, which collectively evaluated the 

potential impacts of these variants. 

 

Table 5. PTM Prediction of STAT4 protein by Musite Deep algorithm. 

Mutations PTM score Cutoff=0.5 

D668G - - 

G618A - - 

G605R - - 

L597S - - 

R584W Methylarginine:0.027 None 

C539Y S-palmitoyl_cysteine:0.04 None 

M517R - - 

R508H Methylarginine:0.817 Methylarginine:0.817 

R508C Methylarginine:0.817 Methylarginine:0.817 

N479S N-linked_glycosylation:0.036 None 

D476Y - - 

N471H N-linked_glycosylation:0.917 N-linked_glycosylation:0.917 

P450A Hydroxyproline:0.042 None 

K343Q 
Ubiquitination:0.257;SUMOylation:0.128;N6-

acetyllysine:0.187;Methyllysine:0.036;Hydroxylysine:0.018 
None 

T336S Phosphothreonine:0.067;O-linked_glycosylation:0.065 None 

P331Q Hydroxyproline:0.038 None 

P325L Hydroxyproline:0.034 None 

C323Y S-palmitoyl_cysteine:0.071 None 

L307F - - 

G248R - - 

R241Q Methylarginine:0.046 None 

R240W Methylarginine:0.033 None 

T177A Phosphothreonine:0.152;O-linked_glycosylation:0.065 None 

R70L Methylarginine:0.02 None 

R43L - - 

R43H - - 

R70L Methylarginine:0.02 None 

R43C - - 

R70C Methylarginine:0.02 None 

D42G - - 

Q41E Pyrrolidone_carboxylic_acid:0.124 None 

R4Q - - 

R31Q Methylarginine:0.045 None 

 

 



International Journal of Molecular Microbiology                                                                2025; 8(1): 79-102 

91 
 

 

 

Fig. 5. PhosphoSite Plus anticipates PTM sites on the STAT4 gene. 

 

 

Prediction of target protein modeling 

The prediction scores reveal that 15 highly 

conserved nsSNPs, out of the 28 evaluated on 

the STAT4 protein, were identified as significant 

protein conformational modifications. This 

evaluation was conducted using 13 different in 

silico tools, which provided a comprehensive 

analysis of the potential structural and functional 

impacts of these mutations. For comparative 

homology modeling, sequences with at least 

>30% similarity and identity were chosen. We 

obtained 50 templates, all displaying 100% 

sequence identity with STML ID (Q14765.1.A), 

for the query sequence. We modeled the 3D 

structure of the STAT4 protein using the 

template ID Q14765.1.A (range: 1-748aa; 

coverage: 1.00), specifically the Alphafold DB 

model of STAT4_HUMAN (Organism: Homo 

sapiens) for the query sequence as presented in 

Figure (6A). The results, derived from a template 

with a model quality refined by Galaxy Refine, 

were further validated using QMEAN with a 

value of -0.44. The proteins mentioned earlier 

were downloaded along with their respective 

PDB files and subjected to mutation using 

PyMol.  

The high RMSD value of 0.33 for mutants 

D668G, C539Y, R508C, T336S, and P331Q 

suggests that these mutations lead to substantial 

structural deviations from the native protein as 

outlined in Table (6), implying that the mutations 

might have a considerable impact on the protein 

conformation. To validate the modeled 

framework, SAVES was employed, and the 

Ramachandran plot evaluation was conducted to 

examine the secondary structure. The resulting 

structure adhered to all constraints imposed by 

potential energy calculations. A significant 

majority of the amino acid residues in the STAT4 

protein (91.50%) were located in a highly 

favorable region, as illustrated in Figure (6B). 

The comparison plot indicates the quality of the 

model in comparison with experimental 

structures of similar sizes. The x-axis shows the 

protein length. The y-axis is the normalized 

QMEAN score. The STAT4 model is 

represented as a red star as shown in Figure 

(6C). For comprehensive details, refer to Table 

(6) for the complete predicted results. 
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A. B. 

  
                                          C. 

Fig. 6. A) The crystal structure of the human STAT4 protein B) Statistics of Ramachandran plot. The most favored, 

additional allowed, generously allowed, and disallowed regions are colored in red, yellow, light yellow, and white 

respectively. C) Model validation by QMEAN. 

 

Table 6. The STAT4 gene structural identification and TM Score 

 ERRAT PROCHECK Verify  TM Align 

Templates Score Core Allow Generously Disallowed Score TM 

Score 

RMSD 

Q14765.1.A  97.4926 91.50% 8.40% 0.10% 0.00% 72.33%   

D668G 97.9885 96.50% 3.40% 0.10% 0.00% 71.66% 0.99881 0.33 

G605R 95.8213 96.60% 3.40% 0.00% 0.00% 67.78% 0.99892 0.31 

L597S 95.5137 96.30% 3.70% 0.00% 0.00% 69.52%  0.99893 0.31 

C539Y 97.4063 96.20% 3.80% 0.00% 0.00% 71.39% 0.9988 0.33 

M517R 95.279 95.90% 4.10% 0.00% 0.00% 70.19% 0.99886 0.32 

R508H 95.1498 96.60% 3.40% 0.00% 0.00% 72.06% 0.99883 0.32 

R508C 95.8333 96.60% 3.40% 0.00% 0.00% 70.32% 0.9988 0.33 

N471H 97.971 95.90% 4.10% 0.00% 0.00% 70.45% 0.99882 0.32 

P450A 96.4235 95.70% 4.30% 0.00% 0.00% 71.39% 0.99895 0.31 

T336S 95.9302 96.30% 3.70% 0.00% 0.00% 73.40%  0.99877 0.33 

P331Q 95.8153 95.70% 4.30% 0.00% 0.00% 70.32% 0.9988 0.33 

C323Y 97.2779 96.80% 3.20% 0.00% 0.00% 71.66% 0.99886 0.32 

G248R 96.4183 95.30% 4.70% 0.00% 0.00% 71.66% 0.99894 0.31 

D42G 97.3761 96.30% 3.70% 0.00% 0.00% 70.05% 0.99885 0.32 

R31Q 95.8092 95.90% 4.10% 0.00% 0.00% 71.39% 0.9989 0.31 

 

 

Molecular docking by PyRx 

To investigate ligand-protein interactions, 

molecular docking was performed using the 

PyRx tool. All 19 selected ligands from the 

PubChem database were docked with STAT4, 

resulting in ten distinct conformations for each 

ligand, characterized by their binding affinity (-

Kcal/mol) as depicted in Figure (7). The docking 

results revealed that these binding affinities are 

indicative of the compounds' activity levels, and 

detailed affinities for all compounds can be 

found in Supplementary Table (S2). 

 

https://swissmodel.expasy.org/repository/uniprot/Q14765?model=AF-Q14765-F1-model-v4
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STAT4-Loniflavone STAT4-PolyPhenols STAT4-Meridine STAT4-IND24 

    
D668G-Loniflavone D668G-Amphimedine D668G-Palbociclib D668G-Polyphenol 

    
C539Y-Loniflavone C539Y-Meridine C539Y-IND24 C539Y-Neoamphimedine 

    
R508C-Loniflavone R508C-Amphimedine R508C-IND24 R508C-Emetine 

    
T336S-IND24 T336S-Loniflavone T336S-Amphimedine T336S-Palbociclib 

    
P331Q-Loniflavone P331Q-Palbociclib P331Q-Quercetin P331Q-IND24 

Fig. 7.  An illustration depicts docking interactions between top chosen compounds and STAT4 Protein. 

 



PSM Biological Research                                                                                                   2023; 8(3): 86-91 

 
94 

PSM Biol Res | https://journals.psmpublishers.org/index.php/biolres 

 

The top compounds with strong binding 

affinities, including Amphimedine, Emetine, 

IND24, Loniflavone, Meridine, Neoamphimedine, 

Palbociclib, Polyphenol, and Quercetin, were 

selected for further investigation. These 

compounds were then docked with both native 

and mutated protein complexes. The interactions 

were explored using Discovery Studio, which 

provides a 2D representation of all docking 

interactions. All of the chosen ligands had 

binding free energies greater than -3 Kcal/mol. 

The greatest binding energy revealed that the 

STAT4 protein successfully docked with 

Loniflavone is -10.5 Kcal/mol. A Loniflavone 

ligand was fixed in the STAT4 binding pocket 

sites by forming the conventional hydrogen bond 

with residues LYS239, GLN140, GLN257, 

LEU255, LEU131, LEU251, PRO250, GLY248, 

GLY249, ILE467, LEU332, ARG330, CYS323, 

GLN321, ASN471; and hydrophobic interactions 

(Alkyl, pi-alkyl, cation, anion, halogens) with 

TRP238, GLY254, ASN253, HIS252, ARG240, 

GLN242, ARG241, ILE244, GLN243, CYS246, 

ALA245, ILE247, TPR464, PRO331 residues. 

Figure (7) depicts the interacting residues 

obtained during docking. Table (7) shows the 

differences in mutant and wild ligand-protein 

residue interactions that indicate changed 

functional properties caused by mutations. 

 

Table 7. Molecular docking interaction between molecules of selected protein-ligand complexes. 

Protein Ligand Docking Score 

(-Kcal/mol) 

Hydrogen Bond Interaction Hydrophobic Interactions 

Wild  Loniflavone -10.5 LYS239, GLN140, GLN257, LEU255, 

LEU131, LEU251, PRO250, 

GLY248, GLY249, ILE467, LEU332, 

ARG330, CYS323, GLN321, 

ASN471 

TRP238, GLY254, ASN253, HIS252, 

ARG240, GLN242, ARG241, ILE244, 

GLN243, CYS246, ALA245, ILE247, 

TPR464, PRO331 

PolyPhenols -10.1 LEU255, GLY254, LYS239, LEU131, 

PRO250, GLY248, GLY249, ILE247, 

TRP464 

TRP38, LEU251, ASN253, HIS252, 

ARG240, ARG241, GLN242, GLN243, 

ILE244, ALA245, CYS246, PRO331 

Meridine -9.6 LEU131, ARG240, GLY254, 

ASN253, PRO331, GLY248, ILE247,  

HIS252, TRP238, LEU251, ARG241, 

GLN242, GLN243, ILE244, ALA245, 

CYS246 

IND24 -9.6 PRO250, LEU332, GLY248, 

GLN243, ARG240, LEU131, 

LEU255, ILE467 

GLY254, ASN253, HIS252, TRP238, 

LEU251, ARG241, ILE247, PRO331, 

ALA245, CYS246, TRP464 

D668G Loniflavone -10.6 LYS239, GLN140, GLN257, LEU255, 

LEU131, LEU251, PRO250, 

GLY248, GLY249, ILE467, LEU332, 

ARG330, CYS323, GLN321, 

ASN471 

TRP238, GLY254, ASN253, HIS252, 

ARG240, GLN242, ARG241, ILE244, 

GLN243, CYS246, ALA245, ILE247, 

TPR464, PRO331 

Amphimedine -10.1 ASN253, LEU131, ARG240, 

ASN471, GLY248, TRP464, PRO331 

LEU251, HIS252, ARG241, ALA245, 

GLN242, GLN243. ILE244, ILE247, 

CYS246 

Palbociclib -9.1 GLN321,LEU332, LEU131, TRP464, 

ILE467, GLY248, GLY249, ASN471, 

ARG240, ASP237, LEU255, 

GLY254, GLU319 

PRO331, TRP238, CYS246, ILE247, 

GLN243, ILE244, ALA245, ARG241, 

GLN242, LEU251, HIS252, ASN253 

Polyphenol -9 LEU255, GLY254, LYS239, LEU131, 

PRO250, GLY248, GLY249, ILE247, 

TRP464 

TRP238, LEU251, ASN253, HIS252, 

ARG240, ARG241, ALA245, GLN242, 

GLN243, CYS246, ILE244, PRO331 

C539Y Loniflavone -10.6 LYS239, GLN140, GLN257, LEU255, 

LEU131, LEU251, PRO250, 

GLY248, GLY249, ILE467, LEU332, 

ARG330, CYS323, GLN321, 

ASN471 

TRP238, GLY254, ASN253, HIS252, 

ARG240, GLN242, ARG241, ILE244, 

GLN243, CYS246, ALA245, ILE247, 

TPR464, PRO331 

Meridine -9 LEU131, ARG240, GLY254, 

ASN253, PRO331, GLY248, ILE247,  

HIS252, TRP238, LEU251, ARG241, 

GLN242, GLN243, ILE244, ALA245, 

CYS246 
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IND24 -8.9 GLN140, PRO250, ILE467, LEU332, 

GLY248, ARG240, LEU131, LEU255 

PRO331, TRP464, CYS246, ILE247, 

GLN243, ARG241, LEU251, TRP238, 

ALA245, HIS252, ASN253, GLY254 

Neoamphimedine -8.9 ASN253, GLY254, LEU131, 

ARG240, ASN471, GLY248, 

GLY249, PRO331 

LEU251, HIS252, ARG241, ALA245, 

GLN242, GLN243. ILE244, ILE247, 

CYC246 

R508C Loniflavone -11 GLN140, GLN257, LEU255, LYS239, 

LEU131, LEU251, PRO250, 

GLY248, GLY249, ILE467, ASN471, 

GLN321, ARG330, LEU332, CYS323 

TRP238, GLY254, ASN253, HIS257, 

ARG240, ARG241, GLN242, GLN243, 

ILE244, CYS246, ALA245, ILE247, 

TRP464, PRO331 

Amphimedine -8.6 LEU131, ARG240, ASN471, 

PRO331, GLY248, TRP464 

TRP238, HIS252, ARG241, GLN242, 

ALA245, ILE244, LEU251, GLN243, 

ILE247, CYS246,  

IND24 -8.5 ILE267, LEU332, GLY248, GLN243, 

PRO250, GLN140, ARG240, 

LEU131, LEU255 

PRO331, ILE247, TRP464, CYS246, 

ALA245, ARG241, LEU251, TRP238, 

HIS252, ASN253, GLY254,  

Emetine -8.4 GLN140, PRO250, GLN132, 

ARG320, GLY254, ARG241, 

GLU319, LYS239, ARG240, 

LEU449, GLN321, ASN471, VAL497, 

TRP500, GLY349, GLY248, TRP464 

ASN253, HIS252, LEU251, TRP238, 

ILE244, GLN243, GLN242, ALA245, 

CYS246, PRO331 

T336S IND24 -9.5 ILE2467, LEU332, GLY248, 

PRO250, GLN140, ARG240, 

LEU131, LEU255 

PRO331, ILE247, GLN243, CYS246, 

ILE244, GLN242, ARG241, LEU251, 

TRP238, GLY254, ASN253, HIS252 

Loniflavone -9.2 GLN240, GLN257, LEU255, LYS239, 

LEU251, LEU131, PRO250, 

GLY249, GLY248, ILE467, ASN471, 

GLN321, CYS323, ARG330, LEU332 

TRP238, GLY254, ASN253, HIS257, 

ARG240, ARG241, GLN242, GLN243, 

ILE244, CYS246, ALA245, ILE247, 

TRP464, PRO331 

Amphimedine -9 ASN253, LEU131, ARG240, 

ASN471, GLY248, TRP464, PRO331 

TRP38, LEU251, HIS252, ARG241, 

GLN242, ILE244, ALA245, CYS246, 

ILE247, GLN243,  

Palbociclib -9 LEU332, TRP464, ILE467, GLY248, 

GLY249, ASN471, GLN321, 

LEU131, ARG240, ASP237, 

LEU255, GLY254, GLU319 

TRP238, PRO331, CYS246, ILE247, 

GLN243, ILE244, ALA245, ARG241, 

GLN242, LEU251, HIS252, ASN253 

P331Q Loniflavone -8.9 GLN140, GLN257, LEU255, LYS239, 

LEU131, LEU251, PRO250, 

GLY248, GLY249, ILE467, ASN471, 

GLN321, ARG330, LEU332, CYS323 

TRP238, GLY254, ASN253, HIS252, 

ARG240, GLN242, ARG241, ILE244, 

GLN243, CYS246, ALA245, ILE247, 

TPR464, GLN331 

Palbociclib -8.5 GLN331, LEU332, TRP464, ILE467, 

GLY248, GLY249, ASN471, 

GLN321, LEU131, ARG240, 

ASP237, LEU255, GLY254, GLU319 

CYS246, ILE247, GLN243, ILE244, 

ALA245, GLN242, ARG241, LEU251, 

TRP238, HIS252, ASN253,  

Quercetin -8.4 ASN253, TRP238, ILE244, LEU131, 

LEU332, LEU449, GLY248, GLY249, 

GLN243, GLN321,  

HIS252, LEU251, ARG241, GLN242, 

ALA245, CYS246, ILE247,  

IND24 -8.3 ILE467, LEU332, GLN331, GLY248, 

GLN243, ARG240, LEU131, 

PRO250, GLN140, LEU255 

TRP464, ILE247, CYS346, ILE244, 

GLN242, ARG241, LEU251, TRP238, 

HIS252, GLY254, ASN253, ALA245 

 

 

 

DISCUSSION  

Generally, SNPs represent genetic variations 

caused by a single nucleotide alteration in a 

genome sequence. While some SNPs are 

multiallelic, the vast majority are bi-allelic, with 

two different bases present at a single DNA 

location. Such variants must have a minimum 

probability level in the population to be classified 

as SNPs, which is often greater than 1% 

(Vallejos-Vidal et al., 2020). Considering that 

nsSNPs are identified by a single amino acid 

mutation inside the coding regions, resulting in 

genetic disorders. Recent research has focused 

substantially on nsSNPs, and large amounts of 

data are available in public repositories like as 
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the dbSNP NCBI, Ensembl, and GnomAD 

databases (Subbiah et al., 2023). 

Polymorphisms are recognized as potentially 

valuable biomarkers for disease detection or 

prognostic due to their high frequency, 

accessibility, low genotyping costs, and capacity 

to conduct association research utilizing 

analytical and computational methods 

(Srinivasan et al., 2016). The latest study has 

associated STAT4 mutations with the 

transmission of HBV and HCC malignancy (Shi 

et al., 2019). Hepatitis comprises a major 

mammalian viral infection that causes a variety 

of serious and persistent complications of liver 

function (Li et al., 2019). Multiple studies have 

examined the link between STAT3 (rs1053004, 

rs2293152) and STAT4 (rs7574865) variants 

with the possibility of HBV and chronic HCC in 

different ethnic groups; however, the outcomes 

remain unclear and inconsistent (Liao et al., 

2014; Shi et al., 2019). The function of a protein 

is closely linked to its tertiary framework, and 

any modification in the order of amino acids may 

impact its structure, leading to diseases.  

The purpose of this study was to use 

bioinformatics tools to discover potentially 

detrimental nsSNPs in the STAT4 gene, as well 

as to investigate the negative nature of STAT4 

mutational changes. Using in-silico tools to 

assess genetic variants in STAT4 will allow for 

larger-scale research and the discovery of 

targeted treatments for associated diseases. It is 

preferable to use multiple tools and get an 

agreement by comparing results from various 

sources. Additionally, bioinformatics innovations 

should be validated in the laboratory using a 

variety of in-vitro and in-vivo techniques. Using 

the SNPNexus tool, 4749 SNPs in the human 

STAT4 gene were predicted in the present 

study. The SIFT and Polyphen both chose 28 

nsSNPs for additional In-Silico research. Table 

(1) has complete information about STAT4 

protein. As indicated in Table (2), a stepwise 

analysis was performed to determine the 

functional consequences of damaging SNPs in 

the STAT4 gene using SIFT > Polyphen >PPh 2 

>Predict SNP>Mutpred2, and PANTHER. Three 

servers, SNP& GO, Meta SNP, and SuSpect, 

were applied to find disease-associated nsSNPs 

with a strong potential influence on the STAT4 

protein. The K343Q (rs1274749529) and P325L 

(rs1424401939) mutations have a higher impact 

on protein stability, according to MU Pro. Out of 

28 nsSNPs, i-stable found 11 nsSNPs to 

increase protein stability while 32 nsSNPs were 

shown to decrease protein production. The 

CUPSAT server study found that 8 mutations 

were stabilizing, whereas the DynaMut server 

calculated that 24 were destabilizing. Studies 

have suggested that certain SNPs may affect 

the activity of the STAT4 protein and its ability to 

regulate immune responses, thus contributing to 

disease susceptibility. 

The mutations N471H, D476Y, and N479S in the 

STAT4 gene have been shown to potentially 

influence immune function and the regulation of 

T-cell responses, making individuals more 

susceptible to Multiple Sclerosis (MS) and 

Crohn's disease by altering the function of the 

STAT4 protein, disrupting cytokine signaling 

pathways and affecting immune cell recruitment, 

which plays a key role in the development of 

these conditions. Additionally, the R240W and 

R241Q mutations in STAT4 have been 

investigated for their association with diseases 

such as Systemic Lupus Erythematosus (SLE) 

and Rheumatoid Arthritis (RA), suggesting that 

variations in STAT4 can have broad implications 

for immune-mediated disorders (Beltrán 

Ramírez et al., 2016; Bravo-Villagra et al., 2024; 

Nageeb et al., 2018). 

The structural assessments suggest that the 

mutations identified, particularly those linked to 

methylation and glycosylation modifications, 

could significantly influence the STAT4 protein's 

function and stability. The STAT4 target gene 

association network was built using GeneMANIA 

and the InBio Discover platform. The SNPs 

R240W, R241Q, P240A, N471H, N479S, and 

D476Y produced a clustered mutation (colored 

red) that typically correlates with tumors in 

humans, as represented by Mutation 3D. The 

PTM analysis showed that mutations such as 

R508H and R508C, which are associated with 

methylarginine, could potentially disrupt the 

protein regulatory functions, while the N-linked 

glycosylation at N471H may affect its stability 

and interactions, contributing to pathogenicity.  
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Using 13 computational tools, we found that 15 

nsSNPs are highly detrimental to the STAT4 

protein. The quality and validity of the STAT4 3D 

model confirmed through SWISS-MODEL and 

SAVES, offer confidence to the structural 

predictions, highlighting the potential impacts of 

these mutations. The high RMSD values for 

mutants like D668G, C539Y, R508C, T336S, 

and P331Q indicate substantial structural 

deviations, which may disrupt normal protein 

function. The docking analysis further revealed 

that these mutations might alter STAT4 binding 

affinity with its ligands, suggesting functional 

consequences. Moreover, docking compounds 

with both natural and mutant STAT4 proteins 

revealed potential therapeutic candidates, with 

interactions depicted in 2D models offering 

promising avenues for drug development 

targeting the mutant STAT4 form. 

This study provides a comprehensive In Silico 

evaluation of functional and structural nsSNPs in 

the STAT4 protein, contributing new insights to 

the understanding of these mutations. Further 

research should be conducted to validate the 

conclusions of this study and explore the 

potential clinical implications of STAT4 

mutations in different populations. Furthermore, 

functional and structural studies are needed to 

explain the potential mechanisms behind the link 

between nsSNPs and HBV disease 

susceptibility. The use of bioinformatic 

approaches for assessing STAT4 genetic 

variations will aid in the planning of large-scale 

investigations and the development of targeted 

therapeutics for diseases caused by these 

variations. The fact that individual network 

knowledge remains elusive could be attributed to 

genetic, technical, and computational problems 

that biological networks of a specific disease 

continue to encounter. The findings of the study 

could be useful in the study of prospective 

therapies and diagnostic methods that require 

both mutational confirmation and substantial 

experimental studies. Further experiments could 

include functional assays such as luciferase 

reporter assays to assess the impact of selected 

nsSNPs on STAT4 gene expression and activity. 

Additionally, in vitro studies using cell lines could 

help evaluate the effect of these mutations on 

immune cell signaling, cytokine production, and 

the response to HBV infection. Moreover, in vivo 

studies using animal models of HBV infection 

could be conducted to observe how these 

mutations influence disease progression. Finally, 

genotype-phenotype association studies in 

diverse human populations could strengthen the 

findings and clarify the role of these nsSNPs in 

HBV susceptibility. 

 

CONCLUSION 

A STAT is a transcription variable that stimulates 

the transcription of genes in response to a 

variety of distinct cytokines. The purpose of the 

study was to discover potentially damaging 

nsSNPs in the STAT4 gene using bioinformatics 

tools to investigate the destructive nature of the 

mutational alterations in the STAT4 gene. 

According to the trajectory analysis and stepwise 

prediction of Deleteriousity of nsSNPs 

(SNPNexus > Predict SNP> PPh2> PANTHER> 

SNP & GO> Dynamut2> Meta SNP> iStable> 

SNP & GO), 13 nsSNPs with a mutational 

influence on the STAT4 function and structure 

were shown to be extremely detrimental. Using 

the SWISS Model, we built a 3D model of the 

STAT4 and refined it with ERRAT and 

PROCHECK programs, and the findings 

demonstrate that it is reliable. The STAT4 

model is also used for docking with ligand 

compounds. The D668G, C539Y, R508C, 

T336S, and P331Q variants were docked with 

chosen drugs with significant binding affinities 

such as Amphimedine, Emetine, IND24, 

Loniflavone, Meridine, Neoamphimedine, 

Palbociclib, Polyphenol, and Quercetin and 

docked with native and mutant structures and 

visualized by Discovery studio. Based on the 

findings of this study, future genome association 

studies will be able to identify perilous nsSNPs 

linked to specific HBV patients. The results imply 

that utilizing computational approaches to 

determine target nsSNPs can be a viable 

alternative option. The previously mentioned 

non-reported nsSNPs can be confidently 

regarded as important contributors to HBV-

related diseases. Wet lab tests are required to 

determine the specific effects of these nsSNPs 

on the protein's structure and function. Finding 

phenotypic or disease-related variation through 



International Journal of Molecular Microbiology                                                                2025; 8(1): 79-102 

98 
 

genomic research is a challenging scenario that 

necessitates innovative approaches. 
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