

Open Access**Article Information****Published:** August 31, 2024**Keywords**

Sawdust,
Fermentation,
Microbial proteins,
Waste management.

Authors' Contribution

MNI designed the study; MNI and AA wrote and revised the paper.

How to cite

Iqbal, M.N., Ashraf, A., 2024. Sawdust Fermentation: An Effective Strategy for Sustainable Production of Microbial Proteins and Waste Management. *Int. J. Mol. Microbiol.*, 7(2): 101-103.

***Correspondence**

Muhammad Naeem Iqbal, PSM Editorial Office.

Email:

driqbalmn@hotmail.com

Possible submissions[Submit your article](#)

Sawdust Fermentation: An Effective Strategy for Sustainable Production of Microbial Proteins and Waste Management

Muhammad Naeem Iqbal*, Asfa Ashraf¹PSM Editorial Office, Pacific Science Media, England, United Kingdom.²Association of Applied Biomedical Sciences, Narowal, Pakistan.**Abstract:**

Sawdust, also known as wood shaving, which is a common waste product of agriculture and industry with disposal issues. These days, there is a lot of interest in waste management (such as sawdust) and research on turning it into various compounds for specific uses and objectives. Microbial proteins also known as single-cell proteins or microbial biomass have a high protein content and are a rich source of carbohydrates, minerals, lipids, vitamins, and amino acids. In this issue, Ado et al. (2024), report the production of bioprotein and biomass by fermentation of *Terminalia superba* sawdust at optimum conditions. The production of bioproteins using sawdust as a substrate is an alternate technique to lessen the environmental impact of sawdust. Producing bioenergy from microbial biomass can be a viable substitute for meeting energy needs in a sustainable manner while lowering the quantity of waste that ends up in the environment.

Scan QR code to visit
this journal.

©2024 PSM Journals. This work at International Journal of Molecular Microbiology; ISSN (Online): 2617-7633, is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-Non-commercial 4.0 International (CC BY-NC 4.0) licence. To view a copy of this licence, visit <https://creativecommons.org/licenses/by-nc/4.0/>.