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Abstract 

This review focuses on the influence of the environmental factors and the human impact on the 
nitrification, specifically aerobic ammonia oxidation that is the degree limiting stage of 
nitrification and is mediated by ammonia oxidizing archaeal and bacteria (AOA/AOB). The 
understanding the primary drivers of ammonia oxidizing distribution and abundance in 
sediments are increasing interest around the globe. Many studies evaluated the environmental 
sediment of the communities’ ammonia oxidizing, but a few issues are known about sediments 
ammonia oxidizing. The sediment characteristics that have significant control in determining 
ammonia-oxidizing communities include ammonia substrates, pH, temperature, carbon, and 
oxygen, these environmental parameters represented reasons the AOA higher than the AOB in 
various sediments and numerous ecological, as they can inhabit possibility specialized that are 
unavailable to the AOB. 
Keywords: Ammonia-oxidizing, environmental factors, anthropogenic. 
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INTRODUCTION 

The nitrification where the ammonia is oxidized to 
nitrite under aerobic status this first step. This step can be 
performed by two communities of microbes ammonia 
oxidizing archaeal (AOA) and ammonia oxidizing bacteria 
(AOB) who are phylogenetically different bacteria but 
execute the same function, in Figure 1 (Kozlowski et al., 
2016; Suzuki et al., 1974). 
 

 
  
Fig. 1. Schematic design of the nitrification steps through (i) 
AOA and (ii) AOB along with nitrous oxide formation. 

Nitrification composed of 1: ammonia oxidation and 2: nitrite 
oxidation. Dashed arrows indicate gaseous distribution from 
sediments into the atmosphere. Capital letters above bolts refer to 
enzymes. AMO – ammonia monooxygenase; HAO- 
hydroxylamine oxidoreductase; Cu- novel enzyme – reduces NO 
and NH2OH; NIR – nitrite reductase; NOR – nitric oxide reductase; 
NXR - nitrite oxidoreductase. 

 
The AOA and AOB communities were supported 

nitrous oxide effluence in different ways. However, 
excessive Nitric oxide (NO) distributes into the atmosphere 
or water and natural hybridized with H2O to form nitrite 
Figure  1 (Kozlowski et al., 2016). The numerous different 
species of microorganisms are responsible for mediating 
these compounds (Osburn et al., 2016). The ammonia and 
ammonium are transformed to nitrate (NO3

-1
) using 

nitrification by a one or two-step process. Nitrate does not 
adhere to soil or sediment particles as well as 
ammonia/ammonium (NH3/NH4

+
), and so nitrate can leach 

further down into the sediment to the anoxic layer. 
Dinitrogen is either lost to the atmosphere, or it can be 
assimilated back to ammonia and kept within the 
biologically available lake of nitrogen. Finally, NO3

-1
 and 

NO2 can also be converted to NH4
+
 using the dissimilatory 

nitrate reduction to ammonium (DNRA), one of the least 
understood nitrogen processes. The DNRA is found in 
sediments with high organic content in the biologically 
available lakes Figure 2 (Dang et al., 2010a; Smith et al., 
2015). 

 
 
Fig. 2. Schematic representation of the nitrogen cycle in 
sediments. Various steps in the nitrogen cycle are numbered 
1 – 5, dashed line. 

 
The nitrifying microorganisms are common in sediment 

and aquatic environments (freshwater and marine). 
Nitrification is two-stage processes that carry out two 
various groups of bacteria, AOB and nitrite-oxidizing 
bacteria (NOB). Currently, no autotrophic microorganism is 
known to oxidize ammonia straight away to nitrate Table1 
(Koops and Pommerening-Roser, 2001; O'Mahony and 
Papkovsky, 2006). The Nitrospira and Nitrospinae form 
their species of bacteria because they are only related to 
other nitrifying bacteria in a metabolic sense (Lucker et al., 
2013; Off et al., 2010). 

The nitrogen is the important component in primary 
productivity (Howarth, 1988). While the increased or 
decreased nitrate environments are challenging and suffer 
from primary productivity as it headway to hypoxia, 
eutrophication, and pollution of water sources (Vitousek 
and Howarth, 1991). Water sources pollution can produce 
physical condition problems similar to methemoglobinemia 
in children and the compounds that promote 
carcinogenesis such as nitrosamines. Additionally, the 
nitrous oxide attends a greenhouse gas, which has a global 
warming potential specifically 265–298 times more than 
CO2 (van Groenigen et al., 2011). The aquatic ecosystems 
are especially sensitive to surplus nitrogen abundances, 
where territory, streams, and lakes. These waters are 
extraordinarily loaded with nitrogen arising from 
aboveground and anthropogenic sources (Rolston et al., 
2017). Effectively, it is approximated that more than 60% of 
anthropogenic dissolved inorganic nitrogen (DIN) loads to 
aquatic ecosystems are removed by microorganisms 
transformations of the nitrogen cycle (Fan et al., 2015). The 
importance of nitrification can be recapitulated in the points: 
(1) the conversion of ammonium to nitrate, with 
consequence for the nitrogen available for living plants.  
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(2) Denitrification relates to the substrate production.  
(3) Obtained of nitrous oxide in terrestrial and aquatic 
ecosystems.  

(4) The oxygen consumption in sediments.  
(5) The environmental acidification. 
 

 
 
Table 1. An example of characterization of nitrifying archaea and bacteria, their phylogeny, and distribution in the environmental. 

Characteristic Phylum  Genera  Habitat  

Oxidize ammonia Gamma-proteobacteria Nitrosococcus Freshwater, Marine 

Oxidize ammonia Beta-proteobacteria Nitrosomonas 
Soil, Sewage, 
Freshwater, Marine 

Oxidize ammonia Thaumarchaea- group I.Ib Nitrososphaera 
Soil and other 
environments 

Oxidize ammonia Thaumarchaea- group III Nitrosocaldus Hot water extremophile 

Oxidize ammonia Thaumarchaea– group I.Ia 
Nitrosopumilus 
Nitrosoarchaeum 

Marine and other 
environments 

Oxidize ammonia Thaumarchaea–SAGMGC-1 Nitrosotalea Omnipresent cluster 
Oxidize nitrite Gamma-proteobacteria Nitrococcus Marine 

Oxidize nitrite Alpha-proteobacteria Nitrobacter 
Soil, Freshwater, 
Marine 

Oxidize nitrite (some can carry out 
complete nitrification Comammox) 

Nitrospira group Nitrospira Soil, Marine  

Oxidize nitrite Nitrospinae  Nitrospina Marine 

 
 
 

Environmental characteristics affecting 
ammonia oxidizers within controlling 
ammonia abundance and function variation  

The numerous environmental parameters might be 
determined nitrification ratio in several ecosystems. They 
have involved the descriptions of things that influences 
geobiological processes in the worldwide, strongly those 
particular to the metabolism of nitrifiers: oxygen 
concentration, substrate (ammonium and nitrite) 
concentrations, temperature, light, salinity, pH, and organic 
matter concentrations. The differences environmental 
parameters that affect ammonia oxidizing in sediments are 
presented with samples from ecosystems. Obviously, the 
several of the bio-physiochemical environmental factors 
and correlations among them complexly affect nitrification 
of sediments (Behrendt et al., 2017). The metabolic 
variations between AOA and AOB are environmental 
indicators in observing the deterioration of the ecosystems.  
Moreover, AOA and AOB have a specified metabolism, 
one that depends on substrate concentration but can be 
dedicated to environmental dynamics whether physical, 
chemical, or biological (Yan et al., 2018). As the effect of 
ammonia oxidizers sensitivity to both identified and 
potentially unknown parameters in the environment, 
ecological challenges by with in situ based field studies or 
experiments combined with relationships community 
composition with activity and function of AOA and AOB. 
The enables our get one moves closer to determining their 
activity under particular states. The investigations have 
shown that the microorganisms composition, abundance, 
distribution, and the activity of ammonia-oxidizing groups 

are influenced by the numerous environmental factors, 
including pH, ammonia substrates, DO, temperature, 
salinity, and inhibitors. Sewage specifics and treatment 
procedure management also affect the structure and 
abundance of ammonia oxidizing in sewage treatments. 
Ammonia Substrates  

The concentrations of NH4
+
 to NH3 is significant due to 

increased ammonia concentrations might be toxic while 
decreased ammonia concentrations might be substrate 
limited to ammonia oxidizing archaeal and bacteria 
(Martens-Habbena et al., 2009; Nakagawa and Stahl, 
2013). There are varieties of parameters that indicators 
NH3 appearance such as temperature and pH that can vary 
considerably in the ecosystem (Christman et al., 2011; 
Puthiya Veettil et al., 2015). The AOA was allowed for 
utilizing and grow ammonia with urea as a substrate. In this 
report, they presented that AOB was not determined in 
sediments among pH (3.75 - 5.4), while the Crenarchaea 
16S rRNA genes and archaeal amoA are higher in ratio 
with nitrification function (Lu et al., 2012). Additionally, the 
Thaumarchaea spp are ammonia oxidizers, and they have 
a urease subunit alpha (ureC) gene affording them the 
ability to hydrolyze urea. Accordingly, it is crucial to 
evaluate the urea concentration in the environment habitats 
(Alonso-Saez et al., 2012). 

pH 

The pH is the environmental parameter that directly 
influences ammonia accessibility due to the effect pH has 
on the NH4

+
: NH3 concentration; as mentioned above the 

increased in the pH the more NH3 is attainable for ammonia 
oxidation (Martens-Habbena et al., 2009). The nitrification 
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influence launched hydrogen (H+), which happens in the 
sediments acidification when most organic nitrogen and 
ammoniac manures are transformed to nitrate (Sahrawat, 
2008). The acidification was major of interaction with the 
pH of ecosystems. The sediment pH is presently 
frequented global due to carbon dioxide dissolution 
(Caldeira, 2005). This frequentation will straight influence 
the ammonia obtainable for ammonia oxidizers that will in 
sequence lessen the amount of nitrate obtained and 
accordingly decreased primary production. This influence is 
considered one of the effects the acidification may have on 
ammonia oxidizing. Little investigations have been 
implemented on the influence pH has on aquatics 
ecosystems (Gao et al., 2012; Kitidis et al., 2011; Laverock 
et al., 2014; Zheng et al., 2014). 

Temperature 

Temperature has an immediate influence on 
microorganism activity, pH, and the moisture of the 
habitats, anyone can indirectly influence the community 
structure and abundance of ammonia oxidizing. However, 
the environmental temperature influences the growth and 
activity of ammonia oxidizing (Guo et al., 2010). At 
subtropical latitudes, daily and seasonal temperature 
variations influence ecosystems. The temperature was 
major of the important influence on ammonia oxidizers. 
ammonia oxidizing have been obtained from various 
environments with a large scale of temperatures seasonal 
(4°C - 97°C) (Beman and Francis, 2006; Nakagawa et al., 
2007; Reigstad et al., 2008; Urakawa et al., 2008). The 
influences temperature on the diversity and communities 
composition of AOA and AOB groups were the influential 
correlation (Zeng et al., 2014). 

Oxygen availability 

The concentration of oxygen is another significant 
characteristic as it is an additional condition for ammonia 
oxidizers to oxidize ammonia. Accordingly, it is crucial to 
realize the depth oxygen can permeate in sediments before 
sampling. Oxygen permeation in subsurface sediments 
commonly ranges among 1 mm – 8 mm deep (Kemp et al., 
1990; Louati et al., 2013). Oxygen permeation of sediment 
is easily correlated to the ability of the soils to absorbed 
oxygen. hence, when oxygen is quickest absorbed, it will 
not change porous depth in the sediments. The primary 
key of oxygen utilization is organic decomposition (Wang et 
al., 2015). Therefore, oxygen concentrations are shown to 
permeate just a few cm depths; nitrification has been 
preserved up to 10 cm depth, into the anoxic waters 
(Gilbert et al., 1998; Laverock et al., 2014). Secondly, the 
AOA was cultivated efficaciously by co-culturing with sulfur-
oxidizing bacteria (SOB). Thiosulfate (S2O3

−2
) was used as 

an electron contributor in the SOB; this may be because 
SOB produces indicator necessary for AOA to grow (Park 
et al., 2010). SOB activity affected by a large decrease in 

dissolved oxygen from 250 μM to 30 μM. However, AOA 
carried out nitrification at this low oxygen concentration at 
the greatest growth rate of 0.6 per day. Previous reports 
state that AOA was able to compete with AOB because of 
position variation about both oxygen and ammonia. AOA 
can carry out nitrification to reducing ammonium degrees 
than AOB and at reducing oxygen concentrations. The 
reducing oxygen concentrations clarify why minimum 
oxygen layer comprise relatively great numbers of AOA 
(Erguder et al., 2009). 

Salinity 

Salinity is an apparent environmental characteristic that 
classifies terrestrial and marine ecosystems. The salinity 
influences ammonia oxidizers in two systems; firstly, it 
promotes ammonia obliging or release to sediments, 
otherwise known as benthic fluxes or ammonia (Weston et 
al., 2010). High salinity liberates the ammonium bound to 
soils, while low salinity improves the adsorption of 
ammonium to soils (Rysgaard et al., 1999), this supports in 
providing diverging concentrations of ammonia-to-ammonia 
oxidizers (Dollar et al., 1991). Secondly, salinity can 
increase environmental pressure to cells such as cell 
toxicity and osmotic pressure. AOA and AOB phylotypes 
have various ways of dealing with these pressures affecting 
to some phylotypes occurring better adapted than others at 
confronting the pressure of salinity (Roessler and Muller, 
2001). Because of this, salinity influences changes in AOA 
and AOB communities (Zheng et al., 2014). 

Carbon 

Ammonia oxidation microorganisms are usually 
identified with the autotrophic bacteria, that inorganic 
carbon as a carbon source and oxidize ammonia as the 
power source, while various investigations showed that 
AOA lives heterotrophically hence, could use organic 
carbon (Guo et al., 2013). Novel sequence analyses of 
ammonia oxidizing the culturing and genomes of ammonia 
oxidizing have confirmed mixotrophy by Ca. 
Nitrososphaera gargensis (Hatzenpichler et al., 2008; 
Konneke et al., 2014), Cenarchaeum symbiosum (Hallam 
et al., 2006), Ca. Nitrosotalea devanaterra (Lehtovirta-
Morley et al., 2011), Nitrosopumilus maritimus (Walker et 
al., 2010), Ca. Nitrosoarchaeum limnia (Blainey et al., 
2011), and Nitrososphaera viennensis could utilize carbon 
dioxide as the only carbon energy (Tourna et al., 2011). 
The reductive and oxidative Krebs cycle was determined in 
the Cenarchaeum symbiosum (Hallam et al., 2006). The 
consumption of organic carbon was proposed relationships 
on the genomes sequence of Ca. Nitrosoarchaeum limnia 
(Blainey et al., 2011). The improvement increase of 
Nitrososphaera viennensis cultures by little drops of 0.1mM 
pyruvate (Tourna et al., 2011), also, mixotrophic assistance 
increase by ammonia oxidizing. The influences of organic 
and inorganic carbon on ammonia oxidizing and power 
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source of AOA are subject to future discussion, which 
deserves deeper studies. 

Sulfide  

Ammonia oxidizing microorganisms were showed in 
sulfide-containing water columns and stream sediments 
(Caffrey et al., 2007; Coolen et al., 2007). The ammonia 
oxidation microorganisms were discovered in the Black 
Sea in anoxic areas where the highest sulfide 
concentration was to the measured 5mM (Lam et al., 
2007). It was reported that a negative relationship between 
sulfide concentration and the abundance of amoA gene 
(Caffrey et al., 2007). To date, few know are possible on 
the inhibitory influences of sulfide on the growth of 
ammonia oxidizing archaeal and bacteria, in exacting 
inhibition entrance concentration, which obliged further 
studies. 

Heavy metals 

Heavy metals, including copper, nickel, chromium, 
cadmium, lead, and zinc could cause inhibition ammonia 
oxidizing group (Radniecki et al., 2009). It was 
characterized that AOA was more responsive to Zn ratio 
than AOB (Ruyters et al., 2010). Moreover, such as in 
Australian farmland soils, the abundance of gene 
transcripts and AOA amoA gene copies were decreased 
clearly after an interference Zn dose (1850 mg Zn kg

−1
) 

(Mertens et al., 2009). Furthermore, it is investigated the 
AOA showed insensitive to Cu pollution than AOB (Li et al., 
2009; Wang et al., 2018). It has been found that ammonia 
oxidizing might be the significant function of the nitrogen 
cycle in low-pH, low-nutrient, and sulfide-containing 
environments. 

Other Environmental Factors 

Among the characteristics of the impacts on ammonia 
oxidizing listed above the many other indicators were 
shown to have some influence on the ammonia oxidizing 
community. These involve soil moisture (Bates et al., 2011; 
Stres et al., 2008), concentrations of cyanide (CN-) (Do et 
al., 2008), altitude (Zhang et al., 2009), soil types (Takada 
Hoshino et al., 2011), and phosphate (Herfort et al., 2007). 
Nevertheless, these parameters either do not have an 
important influence on ammonia oxidation microorganisms 
or have not been determined by factors on the ammonia 
oxidation, although the mechanisms concerned are not fully 
understood.  

 

HUMAN IMPACT 

Human impacts are the period of anthropogenic 
(Brondizio et al., 2016) just microorganisms, and human 
influences control the quantity of biologically available 
nitrogen in the atmosphere as stated by (Galloway and 

Cowling, 2002). Regrettably, human impacts have 
significantly affected by the nitrogen cycle transformations; 
this may influence the rates and sites of denitrification, 
nitrogen fixation, and nitrification through the effects of 
increased nitrogen on microorganism transformations in the 
nitrogen cycle (Vitousek et al., 1997). Anthropogenic is 
influencing the nitrogen cycle by producing CO2 in the 
atmosphere through the combustion of fossil energy and 
agriculture. The immoderate cremation of fossil energy 
sources and the grown requirements for nitrogen in farming 
and manufacture had a different influence on the worldwide 
nitrogen cycle and the reason some ecosystem problems, 
for example, the greenhouse and eutrophication in reaction 
to N2O emissions. The last objective of getting an idea the 
N cycle is to counteract that ecological challenges. that 
lead to climate change and will affect the nitrogen cycle 
immediately because of its tight links with the carbon cycle. 

 

DYNAMIC OF AMMONIA OXIDATION 
MICROORGANISMS IN ECOSYSTEMS 

The dynamics and structure of ammonia oxidation 
group in environmental ecosystems have presented a 
comparatively complicated issues given that they 
computations for natural resources and characteristics 
environmental.  Up to now, it is incomprehensible which the 
physiochemical conditions and environmental factors affect 
AOA overestimated than AOB (Jia and Conrad, 2009). 
Many investigations have recommended that AOA is 
dominated than β-AOB in ecosystems (Adair and 
Schwartz, 2008; Bernhard et al., 2010; Kalanetra et al., 
2009; Leininger et al., 2006; Santoro et al., 2010). The 
AOA gene copies were shown several requests for quantity 
moreover than the beta-proteobacterial amoA gene in the 
North Atlantic (Wuchter et al., 2006). However, the 
investigation showed functional relationships among the 
amoA genes and abundances described by the qPCR 
targeting 16S rRNA and using CARD-FISH by direct 
enumeration. Furthermore, it has been confirmed that the 
number of AOA is higher abundant than AOB in China (Liu 
et al., 2018), the Gulf of California (Beman et al., 2008), 
and the Japan Sea (Nakagawa et al., 2007).  

The opposite of investigations the AOA is dominated 
than β-AOB in ecosystems, some investigations have 
determined the AOB be higher overestimated than the 
AOA (Dang et al., 2010b; Jin et al., 2010; Mosier and 
Francis, 2008). The qPCR is showed the AOA gene copies 
were lower than β-AOB in the San Francisco Bay, while the 
AOA was determined various concentrations than β-AOB 
in the bay (Mosier and Francis, 2008). 
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CORRELATING NITRIFICATION ACTIVITY TO 
FUNCTION 

The identifying the phylotypes and group of nitrifies 
promoting to the measure/observed nitrify functioning is 
challenging. Few studies detected AOA and AOB found 
abundances in situ as the AO could be a small percentage 
of the total community. Furthermore, it is complicated to 
extract the whole mRNA entirely from environmental 
samples. RNA and DNA amplified can as such be biased 
due to characteristics PCR biases (Smith and Osborn, 
2009). Despite these difficulties, it is especially useful to 
quantify transcripts as it brings us a step closer to 
identifying the active microorganisms than gene 
quantification alone. Moreover,  the carried out the model 
on how targeting amplified can be available in correlating 
nitrification activity to function (Zhang et al., 2015). They 
determine that AOB were unaffected by salinity changes, 
however, they included lower transcriptional activity as 
salinity raised, and AOA had maximum transcriptional 
activity at average salinity. Up to now, the publication has 
provided complementary confirmation on how AOA and 
AOB respond to salinity, making it more crucial to 
encouragement field studies with laboratory-based 
experiments. 

 

FURTHER APPLICATIONS 

The possibility and functional application of ammonia 
oxidizing during sewage treatment are the comparatively 
limited right now. Separately, it is essential to describe the 
competition among AOB and AOA. Furthermore the 
association among the AOA and anaerobic ammonia 
oxidation is an anaerobic bacteriological process in which 
ammonia, combined with nitrites, are transferred to (N2) 
dinitrogen gas corresponding to reaction (Kuenen, 2008). 
Both anaerobic ammonia oxidation bacteria and AOA 
increase gradually, and their concentration necessitates 
richly experience; accordingly, development of an effective 
and rapid technique of increasing AOA and anaerobic 
ammonia oxidation is essential to the widespread 
application of these novel researchers in ecological 
conservation. It is also required to improve a unique 
technology to can use novel functions of ammonia 
oxidation microorganisms, for example, treating sewage 
with hyperthermal or manufacturing sewage discharge 
retardants of AOB rather than AOA. Such as that utterly 
autotrophic nitrogen removal over nitrite (CANON) 
procedures the couples AOB and anaerobic ammonia 
oxidation, nitrogen might be remoted under entirely 
autotrophic status (Sliekers et al., 2003). It is similarly 
suggested that a unique process in which a compound of 
ammonia oxidation and anaerobic ammonia oxidation is 
applied may be advanced. 

 

CONCLUSION 

The ammonia oxidizing microorganisms, which are 
diversified and abundant groups, have adapted to live in a 
high diversity of harsh environments. The environmental 
characteristics such as ammonia, salinity, pH, and 
temperature all represent a role in determining ammonia 
oxidizer activity. Studies of the ecological factors affected 
and the anthropogenic in the community of AOA and AOB 
across a variety of environments habitats have shown wide 
physiological diversity under comparing environmental and 
climatic states. However, to improved understand Nitrogen 
dynamics, the study on the temporal and spatial variations 
of AOB and AOA functioning. Integrated studies of AOA 
and AOB groups using addition methodologies are 
expected to facilitate determination of nitrification functions 
of archaeal and bacterial ammonia oxidizers in different 
ecological situations. Concerned about reducing 
greenhouse gas emissions and the lost nutrients from 
agricultural, it is necessary to obtain a better understanding 
of the bacterial communities concerned and their specific 
contributions to nitrification and nitrogen cycling worldwide. 
The further applications of these unique studies in 
ammonia oxidizing are examined. The unique technological 
applied for the nutrients removed must not only ensure the 
wastewater quality and consume less energy. As well as 
limited the engendering of more N2O, this will be important 
to improve our possibility to develop improved strategies for 
nitrogen cycle management and to better the nitrogen use 
efficiency, while concurrently to minimize negative 
ecological impacts. 
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