

Open Access
Article Information**Received:** July 29, 2025**Accepted:** August 13, 2025**Published:** August 22, 2025**Keywords**

Environmental valuation, Ecosystem services, Sustainable development, Climate change adaptation, Ecological economics, Developing countries, Resilience planning, Sustainability strategies.

How to cite

Abdel-Raheem, M.A., Philip, D., Rajkumar, S.R., 2025. Analyzing Phenomena of Sustainable Environmental Strategies for Climate Change from an Ecological Perspective. *Int. J. Altern. Fuels. Energy.*, 9(1): 1-13.

***Correspondence**

M. A. Abdel-Raheem
Email:
ma.abdel-raheem@nrc.sci.eg

Possible submissions[Submit your article](#)

Analyzing Phenomena of Sustainable Environmental Strategies for Climate Change from an Ecological Perspective

M. A. Abdel-Raheem¹ , Denny Philip², S.R. Rajkumar³

¹Pests & Plant Protection Department, Agricultural and Biological Research Institute, National Research Centre, 33rd El Bohouth St, (Postal code: 12622) Dokki, Giza, Egypt.

²Principal, St.Joseph's College, Pilathara, Kannur University, Kerala, India.

³Head & Librarian, Rev.Fr.E.J.Thomas. SJ. Library & Information Centre, St. Joseph's College, Pilathara, Kannur University, Kerala, India.

Abstract:

This research examines various sustainable approaches, such as the adoption of renewable energy sources, ecosystem-based adaptation strategies, circular economy models, and conservation-driven land use practices, to assess their efficacy in addressing and adapting to climate-related challenges. The study takes an interdisciplinary approach, highlighting the interconnectedness of ecological systems and human actions. By examining existing research, policy guidelines, and real-world examples from various regions, the study uncovers effective strategies and obstacles in integrating sustainability objectives with ecological resilience. The results indicate that approaches grounded in ecological concepts, such as protecting biodiversity, sequestering carbon in natural environments, and promoting sustainable resource cycles, provide the most comprehensive and enduring advantages. This research adds to the ongoing conversation on sustainability by promoting an ecological perspective that seeks to harmonize environmental well-being, socio-economic progress, and climate mitigation efforts. The study explores important ideas like ecosystem-based adaptation (EbA), nature-based solutions (NbS), and how ecological intelligence helps keep climate action going. The results show that methods based on understanding ecosystems are usually more flexible, stronger in the long run, and better at dealing with both short-term and long-term climate issues. But these environmental approaches often face problems like strict rules, lack of money, and social or political challenges, which stop them from being used widely or included in bigger plans. The study concludes that using a stronger ecological view in making climate strategies can help connect environmental sustainability with climate resilience, leading to more complete and successful ways to take action on climate change.

Scan QR code to visit
this journal.

©2025 PSM Journals. This work at International Journal of Alternative Fuels and Energy; ISSN (Online): 2523-9171, is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-Non-commercial 4.0 International (CC BY-NC 4.0) licence. To view a copy of this licence, visit <https://creativecommons.org/licenses/by-nc/4.0/>.

INTRODUCTION

Climate change is one of the biggest issues of the 21st century, affecting ecosystems, human communities, and the planet's overall sustainability (Agudelo-Vera *et al.*, 2011; Iqbal, 2025; Iqbal and Ashraf, 2023). While traditional methods for dealing with it are useful, they often don't fully address how environmental, social, and economic factors are connected (Arora *et al.*, 2018). In recent years, there's been more attention on sustainable environmental strategies that follow ecological principles, like ecosystem-based adaptation (Oktaviani and Masjud, 2024), nature-based solutions (Ahmad *et al.*, 2022; Ashraf *et al.*, 2025), and protecting biodiversity (Diesendorf, 2020). These methods are seen as effective because they offer solutions that work for both the environment and development (Clare *et al.*, 2016). From an ecological viewpoint, it's clear that natural systems and human activities are closely linked (De Haen and Hemrich, 2007). Biodiversity (Wilson *et al.*, 2019), the ability of ecosystems to recover (David Raj *et al.*, 2024), and maintaining a balanced environment (Filho *et al.*, 2015) are key in creating strong responses to climate change. These approaches can tackle several problems at once, such as capturing carbon, restoring habitats, managing water resources, and supporting local communities by using the natural ability of ecosystems to adapt (Cheng and Li, 2024).

However, even though there's more awareness worldwide, putting ecological strategies into practice often runs into problems like regulations, money issues, and social or political challenges (Görg *et al.*, 2017; Saarikoski *et al.*, 2018). Different types of ecosystems, how they're managed, and how much local communities are involved all affect how well these strategies work in various places. This shows that it's important to carefully look at how ecological ideas are used, how well they fit into climate policies, and what real effects they have on the environment (Abbass *et al.*, 2022). This study examines the phenomena of sustainable environmental approaches for dealing with climate change from an ecological point of view, looking at their results and effects in different

environmental settings. The goal is to find out common trends, difficulties, and opportunities that can help build stronger, more adaptable, and more complete climate action plans.

Statement of the problem

In spite of worldwide endeavors to address climate change through naturally sustainable procedures, many of these approaches stay divided, technocentric, or barely centered on emissions reduction, regularly dismissing their environmental impacts. Whereas procedures such as renewable energy generation, carbon offsetting, and green infrastructure development have gained prominence, their long-term effectiveness and environmental compatibility are often addressed. In numerous cases, such methodologies are actualized without adequate thought of environmental flow, leading to unintended natural degradation, biodiversity misfortune, or environmental imbalances. Moreover, there's a discernible crevice in understanding how biological principles such as flexibility, biodiversity interdependency, and environmental input loops can illuminate and improve the plan and execution of climate procedures. The nonattendance of a comprehensive biological point of view undermines the supportability and flexibility of climate interventions, particularly in defenseless biological systems where natural edges are currently being tested. This considers points to analyse the key issues related to ecologically feasible procedures for climate change through a biological focus. It looks for ways to reveal how environmental contemplations are right now coordinates (or ignored), what obstructions exist to biologically educated approaches, and how these methodologies can be reoriented to way better bolster both climate flexibility and biological system wellbeing.

Objectives

The overarching aim of this research is to explore and critically analyse the role and effectiveness of environmentally sustainable strategies in addressing climate change, with a particular focus on their ecological dimensions. The study has the following specific objectives:

1. Investigate the types of environmentally sustainable strategies currently utilized in climate change mitigation and adaptation efforts.
2. Integration of ecological principles into sustainable climate strategies
3. Analysis of ecological outcomes and impacts of sustainable strategies in different environmental contexts
4. Integrating ecological perspectives into climate change strategies

Literature Review

The increasing urgency of climate change has led to a wide range of research on sustainable environmental strategies, particularly those based on ecological frameworks. The literature reflects the growing consensus that traditional reduction efforts are not sufficient unless ecosystem complexity and interdependence are involved. Ecology sustainability is prepared to maintain the ecological integrity and the services it provides. The concept of ecosystem self-regulation reasoned that all sustainable strategies must condemn the natural feedback loop and the ability to place loads (Agudelo-Vera *et al.*, 2011). Ecosystem-based adaptation (EBA) adaptation has evolved as a central topic of ecologically based climate (Arora *et al.*, 2018). Application of EBA has been shown for coastal restoration projects (Ahmad *et al.*, 2022), reforestation efforts (Isomova, 2024), and water pod management (Casanovas *et al.*, 2022) that reduces all climate impacts and simultaneously improves ecosystem health (Geneletti and Zardo, 2016). The circular economy model, which is currently gaining global traction, aims to separate economic growth from environmental degradation by highlighting waste minimization, resource efficiency and product expansion (Macarthur and Heading, 2019). This strategy corresponds closely to the ecological principles of nutrition and energy cycles with closed loops. Renewable energy is often used as a temporary loss, but the literature is increasingly warning about ecological compromises. For example, large scale solar parks and bioenergy production can lead to habitat loss and reduced biodiversity (Gasparatos *et al.*, 2017). A truly ecological

perspective requires sensitive use of renewable energy and integration of landscape ecology and species conservation into energy planning (Iqbal, 2023; Picchi *et al.*, 2019). Many strategies remain human-centric and focus on carbon indicators rather than overall ecosystem health. Furthermore, empirical data on the long-term ecological outcomes of climate strategies are limited, especially in developing countries. The new literature requires an interdisciplinary approach that combines ecological science, social justice, and indigenous knowledge systems (Leach *et al.*, 2018).

Research methodology

This study adopts a qualitative, exploratory systematic literature review research design aimed at analysing the ecological dimensions of environmentally sustainable strategies for climate change. The methodology integrates document analysis, case study evaluation, and thematic content analysis to uncover patterns, practices, and ecological outcomes of climate strategies across diverse contexts. By focusing on selected climate change strategies implemented in different ecological settings (e.g., forests, coastal zones, agricultural systems). This systematic literature review design allows for in-depth analysis of the interaction between sustainable practices and ecological processes.

Document and policy review

A comprehensive review of existing scholarly articles, reports, and case studies related to climate strategies across diverse contexts and identify documented challenges. A comprehensive review of global, regional, and national environmental policy documents reveals an evolving recognition of ecological principles as central to sustainable climate strategies. However, implementation remains uneven, with gaps between policy intent and ecological outcomes. A systematic literature review was chosen to provide a comprehensive and unbiased overview of existing studies. This method allows for the collection of Peer-reviewed journal articles, policy documents, reports from international organizations (e.g.,

IPCC, UNEP), from credible sources, helping to generate evidence-based conclusions.

The following databases and digital libraries were chosen:

Search Platforms to Use

- Google Scholar: Best for academic articles
- Scopus / Web of Science: Advanced peer-reviewed research
- ScienceDirect / Springer / Wiley: Full-text scientific journals
- UNEP, IPCC, FAO, IUCN Websites: Reports and policy documents
- JSTOR: Interdisciplinary and ecological history

Search terms included combinations of:

"Environmental sustainability strategies for climate change" "climate change adaptation and ecological perspective" "ecological approaches to climate mitigation" "sustainable ecological strategies climate change" "ecosystem-based climate change solutions" "nature-based climate adaptation strategies"

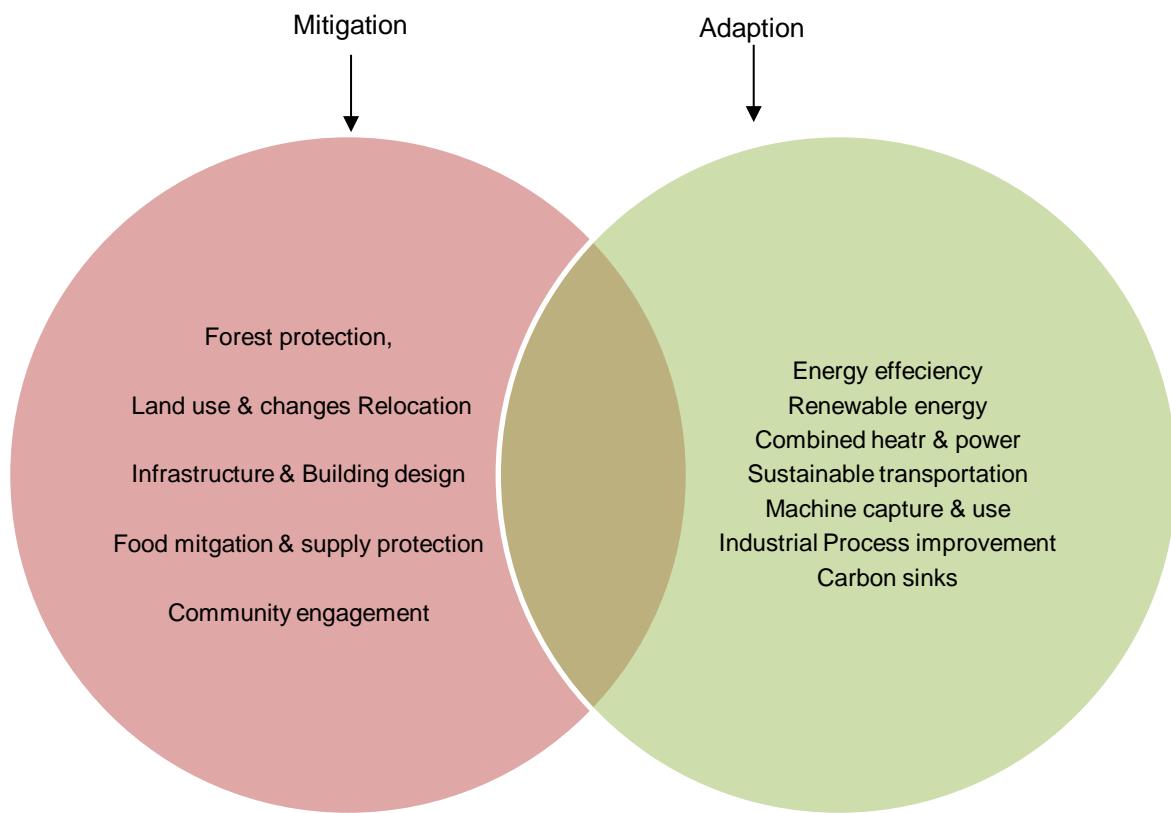
Inclusion Criteria: Peer-reviewed journals articles, conference proceedings, white papers, academic books and reputable gray literature were published between 2015 and 2025. Studies must focus on relevance to current climate science and policy. Strategies must directly involve ecological systems or processes (e.g., wetlands restoration, forest-based carbon sequestration, biodiversity conservation).

Exclusion criteria: Primarily focused on approaches focused only on economic or social aspects without environmental sustainability. Titles and abstracts were screened for relevance. Strategies that rely purely on technological solutions without ecological integration (e.g., geoengineering, carbon capture via machinery). Full-Text Review: Eligible articles were reviewed in full to confirm inclusion.

Each study's findings were compared to determine common patterns and contrasting viewpoints. However, proper academic integrity was maintained by citing all sources appropriately and avoiding plagiarism. This methodology provides a strong framework for eco-friendly sustainable strategies for climate change via ecological lenses and an evaluation of existing research on specific options for future research.

Environmentally sustainable strategies in climate change mitigation and adaptation

Nature-based solutions (NbS)


An ecologically maintainable techniques point to address climate alter whereas protecting the astuteness of environments and guaranteeing long-term strength. These methodologies drop into two fundamental categories: relief mitigation (lessening or avoiding nursery gas outflows) and adjustment adaptation (altering frameworks to play down hurt from climate impacts). Numerous cutting-edge procedures mix both goals and progressively coordinated environmental standards. Underneath are key categories of these strategies: Nature-based arrangements tackle the control of environments to combat climate change, advertising both moderation and adjustment benefits (Nazari *et al.*, 2024).

Reforestation and afforestation

Assimilate CO₂, re-establish biodiversity, and control water cycles. Wetland Rebuilding: Act as carbon sinks, diminish surge chance, and improve water purification. Mangrove preservation: Ensure coastal zones from storm surges and sequester expansive sums of carbon. The "Extraordinary Green Divider" extend in Africa combines afforestation with community resilience-building.

Ecosystem-based adaptation (EbA)

EbA emphasizes the utilization of biodiversity and biological system administrations to assist communities to adjust to climate variability.

Fig.1. Climate Adaptation & Mitigation Synergies.

Source: Green Resilience strategies (2017) graphic concepts of David MacLead, city of Toronto.

Agroecology

Consolidates conventional information and environmental standards in agribusiness to move forward nourishment security and resilience. Integrated Watershed Administration: Keeps up upstream biological systems to diminish downstream flooding and erosion. Coral Reef Rebuilding: Bolsters fisheries, tourism, and coastal security against sea-level rise.

Sustainable land use and agriculture

Ecologically feasible cultivating hones upgrade carbon capacity, diminish outflows, and increment resilience.

Agroforestry

Combines trees and crops to progress soil quality and biodiversity. Conservation Horticulture: Hones like trim revolution,

negligible culturing, and natural cultivating diminish soil degradation. Soil Carbon Sequestration: Increments natural matter in soils to capture climatic carbon.

Renewable energy and low-impact infrastructure

Whereas mechanical, these methodologies can be planned to regard and back environmental systems. Solar and wind energy can replace fossil fuels, but careful site planning is essential to avoid negative impacts on biodiversity. Green Foundation: Incorporates urban parks, green rooftops, and porous asphalt that improve urban versatility to warm and flooding. Cities like Singapore and Copenhagen are contributing in green foundation as portion of their adjustment plans (Onyena and Sam, 2025).

Biodiversity conservation and protected areas

Climate alter undermines biodiversity, but securing biological systems too upgrades their carbon-storing potential and versatile capacity.

Protected zone systems: Moderate key territories and relocation corridors.

Community-based preservation: Locks in nearby partners in overseeing common assets reasonably.

Circular economy and resource efficiency

These procedures decrease the biological impression of generation and consumption. Waste Decrease and Reusing: Brings down outflows from landfills and incineration. Sustainable Water Administration: Diminishes over extraction and vitality utilize in water treatment. Environmentally maintainable climate techniques are progressively guided by biological science, joining relief and adjustment in ways that back biodiversity, upgrade versatility, and support environment administrations (Purvis *et al.*, 2019). Whereas promising, these methodologies require solid administration, comprehensive arranging, and persistent observing to guarantee biological judgment and social value.

Integration of ecological principles into sustainable climate strategies

Biodiversity conservation

As climate alter quickens, the victory of feasible procedures depends not as it were on their specialized possibility but moreover on their biological soundness. Key environmental standards such as biodiversity preservation, biological system strength, and biological adjust are central to guaranteeing that moderation and adjustment measures are both successful and economical within the long term. This segment surveys how these standards are consolidated into current natural procedures. Biodiversity is essential for the functioning and health of ecosystems. High levels of biodiversity enhance resilience to disturbances and support a wide

range of ecosystem services. (e.g., fertilization, water filtration, and carbon sequestration).

Integration in strategies: Nature-Based Arrangements (NbS) and Ecosystem-Based Adjustment (EbA) frequently prioritize territory rebuilding and species protection (Riera-Spiegelhalder *et al.*, 2023; Terton *et al.*, 2024).

Projects like ensured range extension, reforestation with local species, and marine ensured ranges point to protect species abundance whereas conveying climate benefits. Agroecology joins differing trim frameworks to upgrade hereditary differing qualities and bug control. While biodiversity is progressively recognized in maintainability talk, it is in some cases side-lined in favour of carbon-focused objectives (e.g., monoculture manors for carbon sequestration). Viable integration depends on utilizing biodiversity pointers and including nearby biological information in arranging.

Ecosystem resilience

Approaches such as wetland rehabilitation, forest conservation, and adaptive land use planning aim to protect or improve ecological resilience. Urban green framework (e.g., green belts, rain gardens) bolsters flexibility by directing urban warm, overseeing stormwater, and keeping up living space connectivity. Soil preservation hones make strides the versatility of agroecosystems to climate stress. Resilience is regularly coordinating through versatile administration systems that screen natural alter and alter intercessions in like manner. Be that as it may, challenges stay in measuring versatility results and interpreting them into arrangement activities.

Ecological balance

Ecological balance alludes to the energetic balance among life forms, common cycles, and their situations. Disturbance of this adjust can lead to cascading impacts, such as intrusive species expansion or environment collapse.

Integration in strategies: Watershed administration and stream reclamation activities point to re-establish common hydrological and

supplement cycles. Coral reef and mangrove reclamation ventures help to re-establish marine biological intelligent disturbed by warming seas and pollution.

Some techniques hazard exasperating biological adjust when not based on sound biological information (e.g., large-scale afforestation with non-native species). The Victory depends on site-specific environmental evaluations and prioritization of normal recovery over designed arrangements when conceivable.

Challenges and Gaps-Short-term targets (e.g., fast carbon offsets) frequently dominate long-term biological goals. Lack of biological education among organizers and designers may lead to misapplication or shallow integration. Monitoring systems frequently emphasize carbon measurements but disregard biodiversity or strength indicators (Sabir *et al.*, 2024). Community association in biological stewardship remains restricted in top-down approaches. Ecological standards are progressively reflected in climate methodologies, especially through NbS, EbA, and feasible agribusiness. Be that as it may, their integration isn't uniform and is regularly compelled by approach needs, information holes, and financial weights. A more ponder, science-informed, and locally relevant approach is required to insert biodiversity, flexibility, and environmental adjust into the centre of feasible climate activity.

Analysis of ecological outcomes and impacts of sustainable strategies in different environmental contexts

Forest ecosystems – Reforestation and afforestation

Environmentally maintainable methodologies for climate alter moderation and adjustment point not as it were to diminish carbon emanations and defencelessness but moreover to support and re-establish environmental capacities. The viability of these methodologies depends on how well they coordinated biological standards and reacts to the one of kind characteristics of each natural setting. Reforestation using native species and afforestation on degraded lands

serve as key approaches to restoring ecological balance and enhancing biodiversity (Qian *et al.*, 2024).

Wetlands – Wetland Restoration and Conservation

Ecological technique: Rewetting depleted peatlands, which involves re-establishing their natural hydrology, is a crucial step in peatland restoration. This process aims to reverse the negative impacts of drainage, such as peat oxidation, carbon release, and biodiversity loss, by raising the water table and restoring water retention capabilities (Stachowicz *et al.*, 2025).

Positive outcomes: Enhanced surge control and water purification. Recovery of sea-going biodiversity (e.g., winged creatures, creatures of land and water, fish). Revival of carbon capacity in peat-rich soils.

Negative impacts: Delayed environmental recuperation in extremely debased areas. Risk of obtrusive species colonization if hydrology isn't carefully overseen. Wetlands offer tall environmental returns, particularly when normal hydrological cycles are re-established and kept up.

Coastal ecosystems – Mangrove and Coral Reef restoration

Environmental strategy: Replanting mangroves, coral transplantation, diminishing coastal improvement pressure (Hernández-Delgado, 2024).

Positive outcomes: Coastal security from storm surges and erosion. Fish nursery living space recovery and made strides marine biodiversity. Blue carbon sequestration in coastal vegetation.

Negative impacts: Low survival rates of transplanted mangroves in ineffectively chosen sites. Coral rebuilding constrained by sea fermentation and rising temperatures. Success is upgraded through community-based administration and ecologically-informed location determination.

Agricultural systems – Agroecology and sustainable farming

Ecological technique: Intercropping, composting, agroforestry, and negligible tillage (Fahad *et al.*, 2022).

Positive outcomes: Increased soil ripeness and microbial diversity. Enhanced fertilization and characteristic bug control through biodiversity. Reduced chemical input and water use.

Negative impacts: Short-term surrender changeability amid move from ordinary farming. Knowledge-intensive; requires instruction and nearby adjustment. Agroecological frameworks advance biological adjust and long-term maintainability when locally adjusted and upheld.

Urban environments – Green infrastructure

Environmental procedure: Urban timberlands, green rooftops, rain gardens, and green corridors.

Positive outcomes: Mitigation of urban Warm Island impact and discuss purification. Creation

of microhabitats for urban biodiversity (e.g., winged creatures, insects) (Ajadi, 2019). Storm water administration and moved forward human well-being.

Negative impacts: Limited space and subsidizing in thickly populated cities. Maintenance challenges without community or metropolitan bolster. Urban green foundation conveys clear biological and social co-benefits when scaled and coordinates with city arranging.

The environmental results of maintainable climate methodologies change over environments formed by biological complexity, human interaction, and execution hones. Techniques established in neighbourhood environment, biodiversity improvement, and resilience-building tend to deliver the foremost advantageous and enduring biological impacts (Upadhyay, 2020). In any case, trade-offs such as monocultures for carbon, or greenwashing in urban ventures, must be overseen to guarantee bona fide natural supportability.

Table 1. Cross-Cutting Observations.

Environmental Context	Key Ecological Benefits	Common Challenges
Forests	Carbon storage, biodiversity, and erosion control	Monoculture risks, land-use conflicts
Wetlands	Water regulation, biodiversity, carbon sinks	Hydrological complexity, delayed recovery
Coasts	Erosion control, fish habitat, blue carbon	Site mismatch, climate stressors
Agriculture	Soil health, ecosystem services	Knowledge gaps, transition costs
Urban Areas	Air and heat regulation, urban biodiversity	Maintenance, space, and funding limitations

Integrating ecological perspectives into climate change strategies

Ecosystem-based thinking in strategy design

As climate alter proceeds to reshape characteristic and human frameworks, there's developing acknowledgment that absolutely innovative or carbon-focused reactions are inadequately maintainable and compelling that climate procedures must moreover be biologically grounded recognizing the complexity, interdependency, and versatility of environments. Coordination of biological

viewpoints into climate alter methodologies guarantees that reactions to climate alter not as it were address emanations but too upgrade biodiversity, keep up biological system administrations, and reinforce nature's versatile capacities. Ecological integration starts with recognizing that environments are foundational to climate soundness. Methodologies ought to be outlined based on ecological substances instead of forced systems. This includes: Prioritizing Nature-Based Arrangements (NbS) such as wetland reclamation, timberland preservation, and green foundation, which convey relief and adjustment benefits whereas

improving biodiversity by applying Scene and Seascapes Approaches that account for environmental network, species movement passages, and the interdependency between earthbound and sea-going ecosystems (Oktaviani and Masjud, 2024). Avoid Biological Trade-offs such as planting monoculture timberlands exclusively for carbon sequestration, which may weaken soil wellbeing, water accessibility, and local species abundance.

Incorporating ecological indicators and metrics

Effective biological integration requires significant appraisal apparatuses. This includes monitoring biodiversity (species abundance, plenitude, territory judgment) nearby carbon emissions, assessing environment administrations such as fertilization, soil maintenance, and water filtration. Using strength pointers (e.g., environment recuperation time after unsettling influences) to assess long-term versatile capacity. Enhancing Multi-Level and Cross-Sectoral Governance Ecological challenges rise above political boundaries and approach segments. Integration endeavours ought to centre on: Breaking down arrangement silos between natural, rural, water, and urban sectors (Riemer *et al.*, 2025).

Aligning climate finance with ecological goals

One major boundary to environmental integration could be a need of environmental education among decision-makers and implementers. Educational outreach to extend open back for biodiversity-oriented climate strategies (Abo-Khalil, 2024). Participatory arranging forms that lock in differing partners in co-creating biologically educated arrangements. Adjusting climate back with environmental goals funding instruments must support techniques that go past outflows and bolster environment judgment. Biological systems give the common foundation that supports flexibility to climate dangers and the administrations that support life. Effective integration requires a worldview move: from seeing biological systems as inactive carbon sinks to recognizing them as energetic,

living frameworks that must be respected, protected, and re-established.

FINDINGS AND DISCUSSION

The analysis of environmentally sustainable strategies across different environmental contexts, guided by ecological principles, yielded the following key findings:

Diverse strategies yield varying ecological outcomes

Ecologically sustainable strategies ranging from reforestation, wetland rebuilding, and agroecology to urban green infrastructure have illustrated noteworthy biological benefits. These include: Enhanced biodiversity and species environment recovery, improved environment administrations such as carbon sequestration, water filtration, and disintegration control. Strengthened biological system versatility to climate extremes like dry seasons, surges, and temperature variability. However, results shift depending on setting, plan, and usage. For occurrence, monoculture reforestation frequently compromises biodiversity in spite of accomplishing carbon sequestration objectives.

Although ecological principles such as biodiversity conservation, ecosystem resilience, and environmental balance are frequently incorporated conceptually into many strategies, their practical application is often inconsistent and limited. In numerous cases:

Projects prioritize short-term carbon picks up over long-term biological sustainability our arrangement with neighbourhood biological conditions diminishes effectiveness. Biodiversity and environment capacities are once in a while included as formal measurements in arranging and assessment. Boundaries to Integration Persist Several boundaries ruin the compelling joining of environmental points of view into climate methodologies, including:

Policy and organization fragmentation. Low environmental proficiency among decision-makers. Insufficient financing for ecosystem-

based approaches, marginalization of nearby and inborn information systems are the impediments that result in environmentally problematic results, indeed when methodologies are well-intentioned.

Community-Based and Nature-Based Approaches illustrate that methodologies established in nearby settings, upheld by conventional biological information and community support, tend to deliver more versatile and environmentally sound comes about. Effective illustrations include: Mangrove rebuilding in India with solid nearby engagement. Agroecological cultivating in Kenya improving both nourishment security and biodiversity. Wetland recovery in Europe re-establishing normal hydrological frameworks and carbon storage. This assumption affirms that coordination biological points of view into climate alter procedures is fundamental for guaranteeing long-term natural maintainability and versatility. Whereas numerous current procedures contribute definitively to climate relief and adjustment, their biological judgment is frequently compromised by barely centred objectives, inadequately arranging, and lacking thought of biological system dynamics. To move forward, it is basic that climate activity systems advance to: Incorporate environmental markers nearby carbon metrics. Adopt all encompassing, ecosystem-based approaches that account for biodiversity, biological forms, and nearby context. Foster comprehensive administration that hoists the voices of innate people groups, neighbourhood communities, and ecologists. Ultimately, tending to climate alter through a biological focal point does not simply relieve harm it offers an opportunity to recover environments, reinforce community versatility, and construct a genuinely maintainable future for both individuals and the planet.

Recommendations

Based on the comprehensive analysis of environmental sustainability strategies and their ecological implications, the following recommendations are proposed to improve the integration of ecological perspectives into climate change mitigation and adaptation efforts.

These recommendations aim to strengthen the long-term effectiveness, ecological balance, and resilience of climate strategies.

Ensure biodiversity conservation, ecosystem resilience, and ecological balance are formally embedded in national and subnational climate strategies (e.g., NDCs, adaptation plans). Recognize and support traditional ecological knowledge (TEK) and community-led conservation as critical assets in climate adaptation and mitigation.

Provide resources, training, and incentives to scale up successful community-managed ecosystems, such as agroecological farms and community forests. Invest in training programs for government officials, development practitioners, and local leaders on ecological systems and ecosystem-based approaches. Implement adaptive management frameworks that allow for flexibility, learning, and continuous improvement of climate strategies based on ecological feedback. Use digital tools and citizen science to enhance ecosystem monitoring, early warning systems, and data transparency. Support innovative solutions that blend traditional practices with modern ecological science. For climate techniques to be really feasible, they must move past carbon targets and receive a coordinate's biological point of view. By implanting biodiversity, environment work, and community stewardship at the centre of approach and hone, governments and organizations can create arrangements that are climate-resilient, socially comprehensive, and biologically regenerative.

CONCLUSION

The analysis shows that using sustainable environmental strategies to deal with climate change, when seen through an ecological viewpoint, can greatly help build resilience and ensure long-term environmental stability. Methods like ecosystem-based adaptation and nature-based solutions show how using natural systems' ability to adapt and connect can help tackle complex climate problems. Using

ecological intelligence combining scientific understanding of ecosystems with social and cultural factors is key to creating strategies that work well and fit the specific situation. However, moving from ideas to large-scale action is often stopped by rules, money issues, and political challenges. To fix these problems, it's important to include ecological ideas in policies, work together across different sectors, and involve local communities. By focusing on ecological aspects, climate plans can better balance environmental protection with resilience, leading to lasting and flexible climate solutions.

CONFLICT OF INTEREST

The authors declare no conflicts of interest regarding the publication of this paper.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability Statement

No datasets were generated or analysed during the current study.

REFERENCES

- Abbass, K., Qasim, M.Z., Song, H., Murshed, M., Mahmood, H., Younis, I., 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. *Environ. Sci. Poll. Res.*, 29(28): 42539-42559.
- Abo-Khalil, A.G., 2024. Integrating sustainability into higher education challenges and opportunities for universities worldwide. *Heliyon*, 10(9): e29946.
- Agudelo-Vera, C.M., Mels, A.R., Keesman, K.J., Rijnaarts, H.H., 2011. Resource management as a key factor for sustainable urban planning. *J. Environ. Manag.*, 92(10): 2295-2303.
- Ahmad, F., Saeed, Q., Shah, S.M.U., Gondal, M.A., Mumtaz, S., 2022. Environmental sustainability: challenges and approaches. *Natural resources conservation and advances for sustainability*: 243-270.
- Ajadi, T., 2019. Global trends in renewable energy investment 2019.
- Arora, N.K., Fatima, T., Mishra, I., Verma, M., Mishra, J., Mishra, V., 2018. Environmental sustainability: challenges and viable solutions. *Environmental Sustainability*, 1(4): 309-340.
- Ashraf, A., Iqbal, M.N., Shahzad, M.I., 2025. The Potential of Nano-fertilizers to Mitigate Heat Stress in Crops under Ongoing Climate Change. *International Journal of Molecular Microbiology*, 8(1): 23-31.
- Casanovas, E., Barassi, C., Sueldo, R., 2022. Azospirillum inoculation mitigates water stress in maize seedlings. *Canadian Journal of Botany*, 81(1): 10-16.
- Cheng, C., Li, F., 2024. Ecosystem restoration and management based on nature-based solutions in China: Research progress and representative practices. *Nature-Based Solutions*, 6: 100176.
- Clare, D.S., Spencer, M., Robinson, L.A., Frid, C.L., 2016. Species-specific effects on ecosystem functioning can be altered by interspecific interactions. *PLoS One*, 11(11): e0165739.
- David Raj, A., Padmapriya, R., David Raj, A., 2024. Climate crisis impact on ecosystem services and human well-being, Climate Crisis, Social Responses and Sustainability: Socio-ecological Study on Global Perspectives. Springer, pp. 3-36.
- De Haen, H., Hemrich, G., 2007. The economics of natural disasters: Implications and challenges for food security. *Agricultural economics*, 37: 31-45.
- Diesendorf, M., 2020. Principles of ecological sustainability, Human ecology, human economy. Routledge, pp. 64-97.
- Fahad, S., Chavan, S.B., Chichaghare, A.R., Uthappa, A.R., Kumar, M., Kakade, V.,

- Pradhan, A., Jinger, D., Rawale, G., Yadav, D.K., Kumar, V., Farooq, T.H., Ali, B., Sawant, A.V., Saud, S., Chen, S., Poczai, P., 2022. Agroforestry Systems for Soil Health Improvement and Maintenance. *Sustainability*, 14(22): 14877.
- Filho, W.L., Shiel, C., Paço, A.d., 2015. Integrative approaches to environmental sustainability at universities: an overview of challenges and priorities. *Journal of Integrative Environmental Sciences*, 12(1): 1-14.
- Gasparatos, A., Doll, C.N., Esteban, M., Ahmed, A., Olang, T.A., 2017. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. *Renewable and Sustainable Energy Reviews*, 70: 161-184.
- Geneletti, D., Zardo, L., 2016. Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. *Land use policy*, 50: 38-47.
- Görg, C., Brand, U., Haberl, H., Hummel, D., Jahn, T., Liehr, S., 2017. Challenges for Social-Ecological Transformations: Contributions from Social and Political Ecology. *Sustainability*, 9(7): 1045.
- Hernández-Delgado, E.A., 2024. Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. *Coasts*, 4(2): 235-286.
- Iqbal, M.N., 2023. Alternative and Renewable Energy: Key to Fighting Climate Change. *International Journal of Alternative Fuels and Energy*, 7(2): 37-39.
- Iqbal, M.N., 2025. Climate Change and Infectious Diseases: Current Trends and New Approaches to Combat the Challenge. *International Journal of Molecular Microbiology*, 8(1): 40-42.
- Iqbal, M.N., Ashraf, A., 2023. Global Climate Change Impacts Health, Environment and Economy. *International Journal of Alternative Fuels and Energy*, 7(2): 34-36.
- Isomova, F., 2024. Principles of nature protection: Guidelines for effective environmental conservation, E3S Web of Conferences. EDP Sciences, pp. 02011.
- Leach, M., Reyers, B., Bai, X., Brondizio, E.S., Cook, C., Díaz, S., Espindola, G., Scobie, M., Stafford-Smith, M., Subramanian, S.M., 2018. Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures. *Global Sustainability*, 1: e13.
- Macarthur, E., Heading, H., 2019. How the circular economy tackles climate change. *Ellen MacArthur Found*, 1: 1-71.
- Nazari, B., Kanani, E., Sepehri, S., 2024. A New Perspective on Assessing the Real Water Savings Resulting from Irrigation Technology Interventions. *Journal of Water Resources Planning and Management*, 150(9): 04024033.
- Oktaviani, A., Masjud, Y.I., 2024. Nature based solution to climate change: Ecosystem based adaptation: How effective for climate change strategies? *Journal of Earth Kingdom*, 1(2).
- Onyena, A.P., Sam, K., 2025. The blue revolution: sustainable water management for a thirsty world. *Discover Sustainability*, 6(1): 63.
- Picchi, P., van Lierop, M., Geneletti, D., Stremke, S., 2019. Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review. *Ecosystem Services*, 35: 241-259.
- Purvis, B., Mao, Y., Robinson, D., 2019. Three pillars of sustainability: in search of conceptual origins. *Sustainability science*, 14(3): 681-695.
- Qian, J., Ji, C., Yang, J., Zhao, H., Wang, Y., Fu, L., Liu, Q., 2024. The advantage of afforestation using native tree species to enhance soil quality in degraded forest ecosystems. *Scientific Reports*, 14(1): 20022.

- Riemer, M., Sa'd, R., Posselt, T., Salehi, P., Corbett, D., Jones, P., Upward, A., DeCruz, E., Baue, B., Asadzadeh, A., Sandholz, S., Kötter, T., 2025. Systemic Management Practices—Enabling Local Governments to Adapt in Response to Complexity. *World*, 6(2): 72.
- Riera-Spiegelhalder, M., Campos-Rodrigues, L., Ensenado, E.M., Dekker-Arlain, J.d., Papadopoulou, O., Arampatzis, S., Vervoort, K., 2023. Socio-economic assessment of ecosystem-based and other adaptation strategies in coastal areas: A systematic review. *Journal of Marine Science and Engineering*, 11(2): 319.
- Saarikoski, H., Primmer, E., Saarela, S.-R., Antunes, P., Aszalós, R., Baró, F., Berry, P., Blanko, G.G., Goméz-Baggethun, E., Carvalho, L., Dick, J., Dunford, R., Hanzu, M., Harrison, P.A., Izakovicova, Z., Kertész, M., Koppenroinen, L., Köhler, B., Langemeyer, J., Lapola, D., Liquete, C., Luque, S., Mederly, P., Niemelä, J., Palomo, I., Pastur, G.M., Peri, P.L., Preda, E., Priess, J.A., Santos, R., Schleyer, C., Turkelboom, F., Vadineanu, A., Verheyden, W., Vikström, S., Young, J., 2018. Institutional challenges in putting ecosystem service knowledge in practice. *Ecosystem Services*, 29: 579-598.
- Sabir, R.M., Sarwar, A., Shoaib, M., Saleem, A., Alhousain, M.H., Wajid, S.A., Rasul, F., Adnan Shahid, M., Anjum, L., Safdar, M., 2024. Managing water resources for sustainable agricultural production, *Transforming Agricultural Management for a Sustainable Future: Climate Change and Machine Learning Perspectives*. Springer, pp. 47-74.
- Stachowicz, M., Lyngstad, A., Osuch, P., Grygoruk, M., 2025. Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway. *Land*, 14(1): 142.
- Terton, A., Qi, J., Jang, N., 2024. Tracking progress on the integration of nature-based solutions and ecosystem-based adaptation in national adaptation plan processes (NAP Global Network synthesis report). International Institute for Sustainable Development <https://napglobalnetwork.org/resource/tracking-progress-on-the-integration-of-nature-basedsolutions-and-ecosystem-based-adaptation-in-national-adaptation-plan-processes>.
- Upadhyay, R.K., 2020. Markers for global climate change and its impact on social, biological and ecological systems: A review. *American Journal of Climate Change*.
- Wilson, E.O., Lovejoy, T.E., Hannah, L.J., 2019. *Biodiversity and climate change*. Yale University Press.