

Research Article

2026 | Volume 11 | Issue 1 | 20-31

 Open AccessArticle Information**Received:** November 23, 2025**Accepted:** January 15, 2026**Published:** January 26, 2026Authors' Contribution

FAMQ designed, performed the experiment and collected data; NMHA wrote the draft manuscript and reviewed the final draft of the manuscript; SMK performed statistical analysis; EASA, FSM reviewed the draft of the manuscript. All authors have approved the final version of the manuscript for publication.

How to cite

AL Hamdani, N.M.H., Qasem, F.A.M., Kasem, S.M., Salih, E.A.S., Al-Shaibani, E.A.S., Moqbel, F.S., 2026. Ameliorative Effects of Selenium on Monochrotophos Induced Hepatotoxicity in Male Rabbits. *PSM Biol. Res.*, 11(1): 20-31.

*Correspondence

Nada M.H. AL Hamdani

Email: n.alhamdani@su.edu.yePossible submissions[Submit your article](#)

Ameliorative Effects of Selenium on Monochrotophos Induced Hepatotoxicity in Male Rabbits

Nada M. H. AL Hamdani^{1*}, Fadhl A. M. Qasem², Shaif M. Kasem³, Elias M. A. Salih², Elham A. S. Al-Shaibani¹, Fahmi S. Moqbel⁴

¹Department of Biological Sciences, Faculty of Science, Sana'a University, Sana'a, Yemen.

²Department of Zoology, Faculty of Science, University of Aden, Aden, Yemen.

³Department of Chemistry, Faculty of Science, University of Aden, Aden, Yemen.

⁴Biology Department, Faculty of Applied Sciences, Thamar University, Thamar, Yemen.

Abstract:

Monochrotophos (MCP), a widely utilized organophosphate pesticide in agriculture, is highly risky to the hepatic health of most animal species. The present study was designed to examine the ameliorative effects of Selenium (Se) on MCP induced hepatotoxicity in male rabbits. A total of 25 normal male rabbits, weighing between 1200 and 1500 g, were randomly assigned to five groups. First group received normal saline and served as the control, second group orally received MCP (0.1 mg/kg bw), third group received MCP + Se (2 μ g/kg bw), fourth group received MCP + Se (4 μ g/kg bw) and fifth group received MCP + Se (8 μ g/kg bw) daily for 25 days. Blood samples were collected at the end of the treatment and analyzed for serum estimation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), total protein (T.P), albumin (Alb), total bilirubin (T.B), and direct bilirubin (D.B). Exposure to MCT caused a significant increase in serum levels of ALT and AST in MCT treated group (G2:133.2 \pm 1.303, 118 \pm 1.140 respectively) when compared to the control group (G1:23.2 \pm 0.836, 24.8 \pm 0.836 respectively), while those of Se + MCP treated groups (G3:98.6 \pm 1.140, 91.2 \pm 1.303, G4: 81.8 \pm 1.303, 84.6 \pm 1.140 respectively) showed significant decrease comparing to that of the MCT treated group. Serum levels of Alb and T.P. of all treatment groups did not show any significant difference compared to the control group. Selenium as an antioxidant showed ameliorated effects against the toxicity of MCP in rabbits, which was dose dependent. Se mitigates MCP-induced liver damage and restored its serum biomarker levels. Further research is warranted to elucidate Selenium's protective mechanisms and their relevance to human health.

Keywords: Monochrotophos, Selenium, Antioxidant, Hepatotoxicity.

Scan QR code to visit
this journal.

©2026 PSM Journals. This work at PSM Biological Research; ISSN (Online): 2517-9586, is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-Non-commercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. To view a copy of this licence, visit <https://creativecommons.org/licenses/by-nc-nd/4.0/>.

INTRODUCTION

The use of pesticides and the resulting pollution is one of the most important and prominent problems of our time. Although using pesticides was an urgent necessity to protect agricultural crops from pests, as well as for good quality, speed up, and increase crop production, on the other hand, it might have affected the environment, which is represented in environmental pollution and health effects due to exposure to the toxic residues of these pesticides on human, animal, and plant tissues (Akhtar *et al.*, 2018; Tang *et al.*, 2021; Tudi *et al.*, 2021; Dhuldhaj *et al.*, 2023). The study of pesticides and their effects has occupied a large space in the research aspect and has become of interest to many research centers and laboratories in an attempt to reveal their dangers and to find alternatives that have less impact on the environment, humans, and animals (AL-Hammadi *et al.*, 2021; Intisar *et al.*, 2022).

Organophosphate (OP) pesticides are considered to be one of the most important factors leading to environmental pollution and damage to living organisms, especially when they are used indiscriminately (Kaushal *et al.*, 2021; Pathak *et al.*, 2022). The problem of pesticide usage was further exacerbated in developing countries due to improper use of pesticides and absence of awareness (Dhuldhaj *et al.*, 2023). OPs make up about 90% of chemical pesticides, and they have been developed throughout the century (Boczkowski *et al.*, 2025).

Yemen is one of the developing countries that widely used pesticides in Qat cultivation (Rashed and Assakaf, 2024; Weir, 2021; Alsanoy and Alhakimi, 2021). The toxic effects of pesticides on humans' and animals' health were not discovered until 1932, when the World Health Organization classified OPs pesticides as highly toxic pesticides (Mahajan *et al.*, 2022; Okolonkwo *et al.*, 2022). Rahman *et al.* (2021) proved the toxicity of OPs pesticides, as acute and chronic exposure to CPF pesticide caused an increase in free radicals such as H_2O_2 , NO_2^- , and NO_3^- in the brain and liver of mice. These pesticides were considered to generate free

radicals that adversely affect the cell membranes (Massoud *et al.*, 2022; Farkhondeh *et al.*, 2022). The toxic effect of OPs is mainly represented in their ability to inhibit the activity of AchE, the enzyme that activates the neurotransmitter Ach, which is the messenger between different parts of the parasympathetic nervous system (Ismail *et al.*, 2021; Ranjan *et al.*, 2022).

Monochrotophos (MCP) is considered to be one of the most widely used OPs pesticides. Indiscriminate use of OPs pesticides affects the environment, plants, animals, and human health (Kumar, 2024). MCP has been shown to induce oxidative stress across various biological systems, leading to significant health impacts. Research indicates that exposure to monochrotophos results in increased lipid peroxidation, protein oxidation, and decreased antioxidant enzyme activities, which collectively contribute to cellular damage in tissues such as the kidneys and liver (Malik *et al.*, 2021).

It has been reported that within the body cells there was a protective system of cellular protective antioxidant enzymes (CPAE), which has the ability within certain limits to protect cells from the harmful effects of free radicals. However, the increase of these radicals in the body of the organism might limit or reduce and inhibit the effectiveness of the activity of these protective enzymes (Martemucci *et al.*, 2022; Kiokias and Oreopoulou, 2021; Zhou *et al.*, 2022; Sadiq, 2023). Some studies have revealed that there were compounds and chemical elements that limited the effect of these free radicals and thus protected cells from their harmful effects by scavenging these radicals before they reached the cell membrane and nullifying their effect. These compounds and chemical elements are known as antioxidants (Engwa *et al.*, 2022; Chaudhary *et al.*, 2023; Pisoschi *et al.*, 2021; Sadiq, 2023). It has been reported that vitamins A, C, and E, as well as the elements Zn, have the ability to strengthen the protective systems of cells through their activation of CPAE, in addition to acting as an inhibitor for the formation of free radicals, as they were considered to be antioxidants

(Hossain *et al.*, 2021; Ponnampalam *et al.*, 2022).

Several studies indicated that Selenium (Se) is one of the chemical antioxidant elements and prevents the formation of free radicals in the body, which might indicate that it has a great protective effect within the body to prevent many diseases and activates CPAE inside the cells. Thus, in turn might reduce the effect of free radicals resulting from the decomposition of pesticides (Vaghari-Tabari *et al.*, 2021; Barchielli *et al.*, 2022). Se plays a crucial antioxidant role in the human body, contributing significantly to cellular defense mechanisms against oxidative stress (Gorini *et al.*, 2021; Huang *et al.*, 2022; Zhang and Wei, 2023). As a trace element, it is essential for the synthesis of selenoproteins, such as GSH, SOD, CAT and GPx, which are vital for neutralizing reactive oxygen species (ROS) and maintaining redox homeostasis (El-Megharbel *et al.*, 2021; Huang *et al.*, 2022; Basegmez, 2023). Selenium supplementation has been linked to improved metabolic health, particularly in chronic diseases like diabetes and cardiovascular disorders, by enhancing antioxidant defenses and reducing inflammation (Hamza and Diab, 2020; Adeniran *et al.*, 2021; Bjørklund *et al.*, 2022; Basegmez, 2023).

Hence, the present study was aimed at studying the ameliorative role of Se against the toxic effects of MCP on the liver of male rabbits.

MATERIALS AND METHODS

Compounds used

Monocrotophos (MCP)

The pesticide was obtained from the Agriculture Office in Al-Dhalea Governorate, where we obtained a can of 100 ml with a concentration of an active substance of 40%. The pesticide was prepared as follows: 0.25 ml of Novacron was added to 1 liter of distilled water so that this solution contains 100 mg of the active substance MCP, and therefore, every 1 ml of the solution contains 0.1 mg of the active substance MCP.

Selenium

Soft gel Selenium yeast supplements used in this study, each soft gel contains 200 µg of Selenium yeast, the product name is Selevyte Selenium, manufactured by Vitane Pharma, USA. It was purchased from the pharmacy of Al-Thawra Hospital, Sana'a, Yemen. The dosage was prepared by dissolving each softgel in 200 ml of distilled water so that each 1 ml of water contains 1µg of Se.

Experimental animals

Twenty-five male rabbits were used in this study. Animals weighing between 1200 and 1500 g, were purchased from the center of Al-Dhalea Governorate. They were housed in cages (60 cm high, 100 cm wide, and 100 cm long) containing husk as the bedding material and had *ad libitum* access to water and food. The whole experiment was carried out at the same environmental conditions under a 12 h light and 12 h dark schedule. The study protocol was approved by the Animal Ethics Committee of Biological Science Department, Faculty of Science, Sana'a University (ethical code: BAHSS101).

Animals were kept for a period of 25 days for adaptations before the commencement of the experiment and divided into five groups (5 animals each) and administered orally for 25 days as follow:

The 1st group (G1): Rabbits were given a daily oral dose of 5 ml of normal saline and served as a negative control group.

The 2nd group (G2): Rabbits were given a daily oral dose of 0.1 mg/kg bw of MCP dissolved in 1 ml of distilled water and served as a positive control group.

The 3rd group (G3): Rabbits were given a daily oral dose of 0.1 mg/kg bw of MCP dissolved in 1 ml of distilled water + 2 µg/kg bw of Se dissolved in 2 ml of distilled water.

The 4th group (G4): Rabbits were given a daily oral dose of 0.1 mg/kg bw of MCP dissolved in 1 ml of distilled water + 4 µg/kg bw of Se dissolved in 4 ml of distilled water.

The 5th group (G5): Rabbits were given a daily oral dose of 0.1 mg/kg bw of MCP dissolved in 1 ml of distilled water + 8 µg/kg bw of Se dissolved in 8 ml of distilled water.

At the end of the experimental period, rabbits were fasted all night, then sacrificed by cervical decapitation next day morning, after that blood samples were collected into sterilized tubes for biochemical analysis.

Biochemical Parameters

The activities of serum ALT and AST were assayed by the method as described by Khanam et al. (2016). Serum Alb was estimated according to the methods of Doumas et al. (1971), and T.P. in the serum was measured according to the methods of Gornal et al. (1949). Serum T.B. and D.B. were determined by the colorimetric method, which was described by Tietz (1976). Using kits purchased from Biodiagnostic Company, Dokki, Giza, Egypt.

Statistical analysis

The mean values of each parameter were computed considering data on 5 rabbits per group and expressed as mean \pm S.D. One-way analysis of variance (ANOVA) was conducted to determine differences between groups, followed by Duncan's new multiple range test (DMRT) as post-hoc test using SPSS version 22. Differences were considered statistically significant at $P \leq 0.05$.

RESULTS AND DISCUSSION

ALT and AST serum levels

Table (1) showed that male rabbits of G2 group that treated with MCP (0.1 mg/kg bw) exhibit a significant increase in serum ALT and AST levels (133.2 U/L, 118 U/L respectively) with a percentage of 474% increase in ALT serum level and 375.8% increase in AST serum levels when compared to that of the control group (23.2 U/L), which indicates severe toxic effect of MCP pesticide in the liver of rabbits. This result might be attributed to the increase in the permeability of the cell membrane that leads to the release of

transaminases into the bloodstream because of the degeneration and necrosis of hepatocytes, which might be attributed to ROS induced by MCP. Our findings are consistent with the findings of some recent studies carried out on the toxic effect of MCP (Chahal, 2023; Uwamahoro et al., 2024). The increase in serum ALT and AST levels indicates liver tissue damage that might have resulted in the leakage of these enzymes into the bloodstream (Vishwanath et al., 2023; Ren et al., 2025). Besides, Sharma and Bansal, (2022) and Massoud et al. (2022) confirmed that Malathion an organophosphates (OPx) pesticide inhibit the activity of CPAE, which plays an active role in protecting the cell from various toxic effects and accelerate the processes of LPO that create free radicals, thus raising the rate of TBARS, which is the oxidizing of free radicals of membrane lipids in rats. Due to that most important pillars of the durability of the cellular membrane have been destroyed, which means that the cytoplasm exits from its natural surroundings to the outside of the cell causing death of the cell (Sule et al., 2022; Rahman et al., 2021; Singh et al., 2022).

In this study, MCP-treated rabbits were treated with three different doses of selenium; low (2 µg/kg bw) in G3, medium (4 µg/kg bw) in G4 and high (8 µg/kg bw) in G5 that have been used as an antioxidant to evaluate their effects on the hepatotoxicity induced by MCP. Table (1) showed that treatment with low, medium and high doses of Se in MCP- treated rabbits of G3, G4 and G5 groups caused a significant increase in ALT and AST serum levels comparing with control groups and a significant decreased in serum ALT and AST enzyme levels when compared with MCP- treated rabbits of G2 group. The percentage decreased in ALT and AST serum levels following treatment with the low, medium and high doses of Se in MCP- treated rabbits was 26.39%, 39%, and 48% for ALT and 23%, 27%, and 46% for AST respectively which was dose-dependent. The findings of the present study were in agreement with the results of Sharma and Bansal, (2021), Ozturk Kurt et al. (2022), Sharma and Bansal, (2022) and Kumar et al. (2024) who observed that treatment with OPs pesticides supplemented with Se decreased serum enzyme

levels of ALT and AST when compared to OPs pesticide treated animals.

Our results demonstrated that Se supplementation significantly attenuated MCP-induced hepatotoxicity, as evidenced by reduced serum ALT and AST levels. This protective effect is attributed to Selenium's essential role in activating glutathione peroxidase (GPx). As a key component of GPx's catalytic site, selenium

enables the enzyme to neutralize MCP-generated reactive oxygen species (ROS) and lipid peroxides. By converting these toxic metabolites into inert compounds, the Se-GPx axis mitigates oxidative damage to hepatocyte membranes and organelles, thereby preserving cellular integrity and normalizing liver enzyme profiles. This mechanism aligns with the observed restoration of hepatic function in Se-treated groups (Kunwar and Nayak, 2025).

Table 1. The ameliorated effect of Selenium against the toxic effect of MCP on the serum levels of ALT and AST in male rabbits.

Groups		ALT U/L	AST U/L
G1	Control group	23.2±0.836	24.8±0.836
G2	MCP treated group	133.2±1.303*	118±1.140*
G3	(MCP + Low dose of Se)	98.6±1.140** ^o	91.2±1.303** ^o
G4	(MCP + Medium dose of Se)	81.8±1.303** ^o	84.6±1.140** ^o
G5	(MCP + High dose of Se)	68.8±0.836** ^o	64.6±1.341** ^o

Values are expressed as mean ± standard deviation (n = 5). *p < 0.05: Difference was significant when compared with the control group (G1), ^op < 0.05: Significant difference compared with the MCP-treated group (G2), NS: Not significant.

G1: Control group, G2: MCP treated group (0.1 mg/kg bw), G3: (0.1mg MCP+2 µg/kg bw Se), G4= (0.1mg MCP+4 µg/kg bw Se), (G5= (0.1mg MCP+8 µg/kg bw

Alb and T.P serum levels

Table (2) showed that serum levels of albumin (Alb) and total protein (T.P) in MCP- treated

male rabbits of G2 did not show any significant difference when compared with that of the control group (G1).

Table 2. The ameliorated effect of Se against the toxic effect of MCP on serum levels of T.P and Alb in male rabbits.

Groups		T.P g/dl	Alb g/dl
G1	Control group	6.48±0.083	4.18±0.130
G2	MCP treated group	6.38±0.130 ^{NS}	4.52±0.083 ^{NS}
G3	(MCP + Low dose of Se)	6.48±0.083 ^{NS}	4.4±0.083 ^{NS}
G4	(MCP + Medium dose of Se)	6.42±0.083 ^{NS}	4.32±0.130 ^{NS}
G5	(MCP + High dose of Se)	6.52±0.083 ^{NS}	4.06±0.89 ^{NS}

Values are expressed as mean ± standard deviation (n = 5). *p < 0.05: Difference was significant when compared with the control group (G1), ^op < 0.05: Significant difference compared with the MCP-treated group (G2), NS: Not significant.

G1: Control group, G2: MCP treated group (0.1 mg/kg bw), G3: (0.1mg MCP+2 µg/kg bw Se), G4= (0.1mg MCP+4 µg/kg bw Se), (G5= (0.1mg MCP+8 µg/kg bw

These results were in agreement with the findings of Malik et al. (2021) and Singh et al. (2022) who studied the effect of MCP in rats. While studies on other types of OPs pesticides

are in agreement with the finding of the present study (El Okle et al., 2022; Wisudanti et al., 2024; Saleem et al., 2025). The results highlight the complexity of assessing liver's health by

measuring protein levels in the blood because serum levels of Alb and T.P might not change significantly despite liver injury, suggesting that Alb and T.P levels can remain stable even when liver function is compromised (Sun *et al.*, 2019; Malik *et al.*, 2021; Singh *et al.*, 2024). Similar to that result rabbits treated with low, medium and high of Se following MCP treatment did not show any significant difference in serum levels of Alb and T.P in rabbits comparing to that of the control and MCP- treated groups, which might be due to the fact that the MCP dose was not enough to affect the targeted cells that produced albumin and total protein.

T.B and D.B serum levels

Table (3) showed that either rabbit's serum levels of T.B or D.B were increased significantly with percentage increases of 61% and 173% respectively, following treatment with MCP in G2 rabbits when compared to that of the control group. The results of the present study were in agreement with the studies of Mohapatra *et al.* (2021), Chabane *et al.* (2022), and Fu *et al.* (2023) that reported that MCP had a toxic effect on the liver of male rabbits. Therefore, liver injury impairs the normal bilirubin metabolism by inhibiting the conjugation and excretory processes, causing bilirubin accumulation in the serum. Also, inflammation due to MCP treatment caused swelling or obstruction of the bile ducts, also inhibiting bile flow and resulting in cholestasis, which increases bilirubin levels. MCP can also accelerate the breakdown of red

blood cells, increasing bilirubin production above hepatic clearance capacity. Such hepatotoxic actions of MCP are in line with many studies showing its ability to cause liver damage, impair protein metabolism, and inhibit enzymatic processes involved in bilirubin clearance.

With regard to the rabbits of G (3), (4), and (5), that treated with low, medium and high doses of Se following treatment with MCP, the mean serum levels of T.B and D.B of each group showed non-significant difference when compared to the control group and a significant decrease which was dose dependent with a percentage decrease of 14%, 32%, 34% respectively for T.B serum levels and 52%, 54%, 57% respectively for D.B serum levels when compared to MCP treated group (G2). Such decreased might be attributed to the antioxidant effect of Se in its three different doses against the induced toxic effect of MCP in such groups which was dose dependent, as the dose of Se increased the antioxidant effect against MCP toxicity decreased. Our results are consistent with prior research as it is in agreement with the findings of Adikwu *et al.* (2020), Tichati *et al.* (2020), Du *et al.* (2022), and Khokhar *et al.* (2022) who reported that Se had a protective or ameliorative role against diverse manifestations of toxic chemically induced hepatotoxicity. Hence, we conclude that Se had an ameliorative effect against the hepatotoxicity of MCP pesticide and mitigates its toxicity in a dose-dependent manner.

Table 3. The ameliorated effect of Se against the toxic effect of MCP on serum levels of T.B and D.B in male rabbits.

Groups		T.B mg/dl	D.B mg/dl
G1	Control group	1.018±0.046	0.23±0.011
G2	MCP treated group	1.64±0.270*	0.63±0.007*
G3	(MCP + Low dose of Se)	1.4±0.1* ^o	0.30±0.008* ^o
G4	(MCP + Medium dose of Se)	1.12 ±0.083* ^o	0.29±0.008* ^o
G5	(MCP + High dose of Se)	1.08±0.083* ^o	0.27±0.008* ^o

Values are expressed as mean ± standard deviation (n = 5). *p < 0.05: Difference was significant when compared with the control group (G1), ^op < 0.05: Significant difference compared with the MCP-treated group (G2), NS: Not significant.

G1: Control group, G2: MCP treated group (0.1 mg/kg bw), G3: (0.1mg MCP+2 µg/kg bw Se), G4= (0.1mg MCP+4 µg/kg bw Se), (G5= (0.1mg MCP+8 µg/kg bw

In this study, the results of the indicators in the last three groups (G3, G4, and G5) indicated that treatment with Se showed a protective effect against the toxicity of MCP, although this effect was not complete, as the three different doses of Se were not enough to nullify the toxic effect of MCP, but the dose-dependent effect caused by Se confirmed its protective role as an antioxidant even when it is given in lower doses. The results are consistent with prior research that has documented the protective or ameliorative properties of Se against diverse manifestations of chemically induced hepatotoxicity. Se has been evidenced to confer protection against cadmium-induced hepatotoxicity in murine models (Du *et al.*, 2022), as well as hepatic damage resulting from the concomitant administration of isoniazid and rifampicin (Adikwu *et al.*, 2020). Comparable protective effects have been observed against 5-fluorouracil-induced hepatotoxicity in albino rats (Adikwu and Ebinyo, 2020) and methotrexate-induced hepatic toxicity in mice (Khokhar *et al.*, 2022). Moreover, Se has exhibited hepatoprotective efficacy against acetaminophen (Al-Doaiss, 2020), 2,4-dichlorophenoxyacetic acid (Tichati *et al.*, 2020), and cyclophosphamide (Abdel Magid *et al.*, 2021) induced hepatic injuries. Additionally, research has demonstrated that Se mitigates hepatotoxic consequences induced by doxorubicin (Cengiz *et al.*, 2021) and carbon tetrachloride in rats (Ebaid *et al.*, 2021). These cumulative findings substantiate the characterization of Se as a formidable antioxidant and hepatoprotective agent with the capacity to alleviate oxidative stress and cellular injury within the liver instigated by various toxic agents..

CONCLUSION

This study confirms that Se as an antioxidant, significantly mitigates MCP-induced hepatotoxicity in male rabbits, which was a

dose-dependent. MCP exposure elevated the activities of liver enzymes GPT, GOT and bilirubin, indicating severe hepatic injury. Se supplementation effectively reduced these toxic impacts, with the highest dose (8 µg/kg b.wt) providing the highest protection. The findings of the present study support that Se has an antioxidant and hepatoprotective activities against organophosphate pesticide toxicity and its health risks. Further studies need to be conducted to further characterize its protective mechanisms and therapeutic applications.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Abdel Magid, A.D., Ali, H. A., Ahmed, M.A.A., 2021. Therapeutic and protective effect of selenium nanoparticles against experimentally induced hepatotoxicity in rats. Benha Vet. Med. J., 40(2): 100–104. <https://doi.org/10.21608/BVMJ.2021.69077.1383>

Alsanoy, A.A., Alhakimi, S.S., 2021. Forecasting the Cultivated Areas of Qat Crop to 2030 And Its Impact on Food Security in The Republic of Yemen Using ARIMA Model. J. Agric. Environ. Vet. Sci., 5(1): <https://doi.org/10.26389/AJSRP.C031220>

Adeniran, S.O., Zheng, P., Feng, R., Adegoke, E.O., Adegoke, E.O., Huang, F., Ma, M., Wang, Z., Ifarajimi, O.O., Li, X., Zhang, G., 2021. The Antioxidant Role of Selenium via GPx1 and GPx4 in LPS-Induced Oxidative Stress in Bovine Endometrial Cells. Biol. Trace Elem. Res., 200(3): 1140-1155. <https://doi.org/10.1007/s12011-021-02731-0>

Adikwu, E., Ebinyo, N.C., 2020. Selenium Safeguards the Liver Against 5-Fluorouracil Induced Toxicity. *Pharm. Biomed. Res.*, 6(3): 197-204. <https://doi.org/10.18502/PBR.V6I3.4646>

Adikwu, E., Nelson, E.C., Fiyebi, P., 2020. Selenium as a therapeutic adjuvant for isoniazid/rifampicin-induced hepatotoxicity. *BLDE Univ. J. Health Sci.*, 5(1): 60-67. https://doi.org/10.4103/BJHS.BJHS_65_19

Akhtar, Z.R., Shoukat, E., Faisal, M., 2018. Genetic Resistance of Mango Mealy Bug against Sprayed Pesticides. *PSM Vet. Res.*, 3(2): 26-31.

Al-Doaiss, A.A., 2020. Hepatotoxicity-Induced by the Therapeutic Dose of Acetaminophen and the Ameliorative Effect of Oral Co-administration of Selenium/*Tribulus terrestris* Extract in Rats. *Int. J. Morphol.*, 38(5): 1444–1454. <https://doi.org/10.4067/S0717-95022020000501444>

AL-Hammadi, M.M., Alnedhary, A.A., Numan, A.A., Murshed, F.A., 2020. Validation and Application of Combined QuEChERS Extraction With Cartridge Solid Phase Extraction Cleanup for Pesticide Multiresidue Analysis in Some Vegetables by GC-ECD. *PSM Microbiol.*, 5(1): 14-25.

Barchielli, G., Capperucci, A., Tanini, D., 2022. The role of selenium in pathologies: an updated review. *Antioxidants.*, 11(2): 251. <https://doi.org/10.3390/antiox11020251>

Basegmez, M., 2023. An Overview of the Antioxidant and Anti-Inflammatory Activity of Selenium. *Intech. Open.*, <https://doi.org/10.5772/intechopen.111630>

Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., Peana, M.F., 2022. Selenium: An Antioxidant with a Critical Role in Anti-Aging. *Molecules.*, 27(19): 6613. <https://doi.org/10.3390/molecules2719661>

Boczkowski, M., Popiel, S., Nawała, J., Suska, H., 2025. History of Organophosphorus Compounds in the Context of Their Use as Chemical Warfare Agents. *Molecules.*, 30(7): 1615. <https://doi.org/10.3390/molecules3007161>

Cengiz, O., Baran, M., Balcioğlu, E., Alisan Suna, P., Bilgici, P., Göktepe, Ö., Önder, G., Goc, R., Yay, A., 2021. Use of selenium to ameliorate doxorubicin induced hepatotoxicity by targeting pro-inflammatory cytokines. *Biotech. Histochem.*, 96(1): 67–75. <https://doi.org/10.1080/10520295.2020.1760353>

Chabane, K., Khene, M.H.A., Zaida, F., Ainouz, L., Gaimis, J., Mameri, S., Baz, A., 2022. Subacute and subchronic methomyl exposure induced toxic effects on intestines via oxidative stress in male albino rats: biochemical and histopathological study. *Drug Chem. Toxicol.*, 45(2): 523-536.

Chahal, A., 2023. Patho-biological and Immunological studies on Monocrotaphos intoxicated broiler chicken fed on Curcumin supplemented feed (Doctoral dissertation, RAI University). p113.

Chaudhary, P., Janmeda, P., Docea, A. O., et al., 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. *Front. Chem.*, 11: 1158198. <https://doi.org/10.3389/fchem.2023.1158198>

Dhuldhaj, U.P., Singh, R., Singh, V.K., 2023. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. *Environ. Sci. Pollut. Res.*, 30(4): 9243-9270. <https://doi.org/10.1007/s11356-022-24381-y>

Doumas B.T., Watson W.A., Homer C.B., 1971. Albumin standard and measurement of the albumin with bromocresol green. *Clin. Chem. Acta.*, 31: 87-96.

Du, H.-L., Zheng, Y., Zhang, W., Tang, H., Jing, B., Li, H., Xu, F., Lin, J., Fu, H., Chang, L., Shu, G., 2022. Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice. *Front. Vet. Sci.*, 9: 942189. <https://doi.org/10.3389/fvets.2022.942189>

Ebaid, H., Al-Tamimi, J., Hassan, I., Habila, M.A., Rady, A., Alhazza, I.M., Ahmed, A.M., 2021. Effect of Selenium Nanoparticles on Carbon Tetrachloride-Induced Hepatotoxicity in the Swiss Albino Rats. *Appl. Sci.*, 11(7): 3044. <https://doi.org/10.3390/APP11073044>

El-Megharbel, S.M., Al-Salmi, F.A., Refat, M.S., Hamza, R.Z., 2021. Selenium/Chitosan-Folic Acid Metal Complex Ameliorates Hepatic Damage and Oxidative Injury in Male Rats Exposed to Sodium Fluoride. *Crystals.*, 11(11): 1354. <https://doi.org/10.3390/crust11111354>

Engwa, G.A., EnNwekegw, F.N., Nkeh-Chungag, B.N., 2022. Free Radicals, Oxidative Stress-Related Diseases and Antioxidant Supplementation. *Altern. Ther. Health Med.*, 28(1): 114-128.

Farkhondeh, T., Mehrpour, O., Sadeghi, M., Aschner, M., Aramjoo, H., Roshanravan, B., Samarghandian, S., 2022. A systematic review on the metabolic effects of chlorpyrifos. *Rev. Environ. Health.*, 37(1): 137-151. <https://doi.org/10.1515/reveh-2020-0150>

Fu, H., Liu, H., Ge, Y., et al., 2023. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. *J. Hazard. Mater.*, 446: 130669.

Gorini, F., Sabatino, L., Pingitore, A., Vassalle, C., 2021. Selenium: an element of life essential for thyroid function. *Molecules.*, 26(23): 7084. <https://doi.org/10.3390/molecules2623708>

Gornal, A.C., Bardawill, C.J., David, M.M., 1949. Quantitative colonicimetric determination of total protein in serum. *J. Biol. Chem.*, 1: 77-751.

Hamza, R.Z., Diab, A.E.A., 2020. Testicular protective and antioxidant effects of selenium nanoparticles on Monosodium glutamate-induced testicular structure alterations in male mice. *Toxicol. Rep.*, 27(7): 254-260. <https://doi.org/10.1016/j.toxrep.2020.01.012>

Hossain, A., Skalicky, M., Breštic, M., Maitra, S., Sarkar, S., Ahmad, Z., Laing, A. M., 2021. Selenium biofortification: roles, mechanisms, responses and prospects. *Molecules.*, 26(4): 881.

Huang, J., Xie, L., Song, A., Zhang, C., 2022. Selenium status and its antioxidant role in metabolic diseases. *Oxid. Med. Cell. Longev.*, 2022(1): 7009863. <https://doi.org/10.1155/2022/7009863>

Intisar, A., Ramzan, A., Sawaira, T., Kareem, A., Hussain, N., Din, M.I., Bilal, M., Iqbal, H.M.N., (2022). Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials – A review. *Chemosphere.*, 133538. [http://doi:10.1016/j.chemosphere.2022.133538](https://doi.org/10.1016/j.chemosphere.2022.133538).

Ismail, A.A., Hendy, O., Abdel Rasoul, G., Olson, J.R., Bonner, M.R., Rohlman, D.S., 2021. Acute and cumulative effects of repeated exposure to chlorpyrifos on the liver and kidney function among Egyptian adolescents. *Toxics.*, 9(6): 137. <https://doi.org/10.3390/toxics9060137>

Kaushal, J., Khatri, M., Arya, S.K., 2021. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. *Ecotoxicol. Environ. Saf.*, 207: 111483.

https://doi.org/10.1016/j.ecoenv.2020.111483

Khanam, F., Iqbal, M.N., Ashraf, A., Yunus, F.N., Alam, S., Muhammad, A., Xiao, S., Toor, S., Mumtaz, H., 2016. Evaluation of Changes in Liver Enzymes in Broiler Chicks (*Gallous domesticus*). PSM Vet. Res., 01(1): 26-31.

Khokhar, A., Karim, B., Azeem, A.K., Lodhi, S., Munawar, R., Sadiq, Y., Laique, T., 2022. Evaluation of Protective Action of Selenium Against Hepatotoxicity Caused by Methotrexate In Mice. Pak. J. Med. Health Sci., 16(1): 516–518. <https://doi.org/10.53350/pjmh22161516>

Kiokias, S., Oreopoulou, V., 2021. A review of the health protective effects of phenolic acids against a range of severe pathologic conditions (including coronavirus-based infections). Molecules., 26(17): 5405. <https://doi.org/10.3390/molecules26175405>

Kumar, A., 2024. Evaluating The Hazards Impacts of Monocrotophos on the Environmental Contamination & Animal Health. Int. J. Adv. Res. Multidiscip. Trends., 1(2): 180-196.

Kumar, U., Srivastava, A. K., Gangwar, N.K., Gangwar, K., Prabhu, S.N., Singh, R., Singh, D.D., 2024. Oxidative Damage, Haemato-Biochemical Alterations in Broiler Chicks Exposed to Chlorpyrifos and Antioxidative Role of Selenium. J. Immunol. Immunopathol., 26(1): 38-48. <http://dx.doi.org/10.5958/0973-9149.2024.00004.4>

Kunwar, A., Nayak, M., 2025. Role of Selenium-Dependent Glutathione Peroxidases (Seleno-GPx) in Radio-Modulation: Lessons for Radiation Oncology: Kunwar and Nayak. Biol. Trace Elem. Res., <https://doi.org/10.1007/s12011-025-04695-x>

Mahajan, R., Verma, S., Chandel, S., Chatterjee, S., 2022. Organophosphate pesticide: Usage, environmental exposure, health effects, and microbial bioremediation. In Microbial Biodegradation and Bioremediation (2nd ed., pp. 473-490). Elsevier. <https://doi.org/10.1016/B978-0-323-85455-9.00013-8>

Malik, V., Singh, J., Kumar, A., Kumar, V., 2021. Protective effect of coenzyme Q10 nanoparticles against monocrotophos induced oxidative stress in kidney tissues of rats. Biologia., 76(6): 1849–1857. <https://doi.org/10.1007/S11756-021-00732-X>

Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., D'Alessandro, A.G., 2022. Free radical properties, source and targets, antioxidant consumption and health. Oxygen., 2(2): 48-78. <https://doi.org/10.3390/oxygen2020006>

Massoud, A., SaadAllah, M., Dahran, N.A., Nasr, N.E., El-Fkharany, I., Ahmed, M.S., Derbalah, A., 2022. Toxicological effects of Malathion at low dose on Wister male rats with respect to Biochemical and Histopathological alterations. Front. Environ. Sci., 10: 860359. <https://doi.org/10.3389/fenvs.2022.860359>

Mohapatra, S., Sundaray, J.K., Kumar, R., Mishra, C.S.K., 2021. Monocrotophos and Glyphosate: Are They Really Matter to Fish Health?. J. Indian Soc. Coastal. Agric. Res., 39(1): 25-40.

El Okle, O.S., Tohamy, H.G., Althobaiti, S.A., Soliman, M.M., Ghamry, H.I., Farrag, F., Shukry, M., 2022. Ornipural® mitigates malathion-induced hepato-renal damage in rats via amelioration of oxidative stress biomarkers, restoration of antioxidant activity, and attenuation of inflammatory response. Antioxidants., 11(4): 757. <https://doi.org/10.3390/antiox11040757>

Okolonkwo, B.N., Amadi, C.F., Chimekagbe, O.E., 2022. Organophosphates toxicity: pathophysiology, diagnosis, and treatment. Asian J. Biochem. Genet. Mol.

Biol., 12(2): 27-37. DOI: [10.9734/AJBGMB/2022/v12i230290](https://doi.org/10.9734/AJBGMB/2022/v12i230290)

Ozturk Kurt, B., Konukoglu, D., Kalayci, R., Ozdemir, S., 2022. Investigation of the protective role of selenium in the changes caused by chlorpyrifos in trace elements, biochemical and hematological parameters in rats. Biol. Trace Elem. Res., 200(1): 228-237. <https://doi.org/10.1007/s12011-021-02616-2>

Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra A., Pandey, V., Rana, N., Cunill, J.M., 2022. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol., 13: 962619.

Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., Serban, A.I., 2021. Oxidative stress mitigation by antioxidants—an overview on their chemistry and influences on health status. Euro. J. Med. Chem., 209: 112891. <https://doi.org/10.1016/j.ejmech.2020.112891>

Ponnampalam, E.N., Kiani, A., Santhiravel, S., Holman, B.W., Lauridsen, C., Dunshea, F.R., 2022. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review. Animals., 12(23): 3279. <https://doi.org/10.3390/ani12233279>

Rahman, H.U., Asghar, W., Nazir, W., Sandhu, M.A., Ahmed, A., Khalid, N., 2021. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ., 755: 142649. <https://doi.org/10.1016/j.scitotenv.2020.142649>

Ranjan, A., Jindal, T., Ranjan, A., Jindal, T., 2022. Overview of organophosphate compounds. Toxicology of Organophosphate Poisoning: New Insights, pp.1-25. https://doi.org/10.1007/978-3-030-79128-5_1

Rashed, B.M.M., Assakaf, G.M.S., 2024. Impact of pesticides exposure on health of pesticide retailers in some areas of Al-dhala Governorate-Yemen. Electron. J. Univ. Aden Basic App. Sci., 5(1): 29-34. <https://doi.org/10.47372/ejuba.2024.1.324>

Ren, K.X., Feng, L., Wu, P., Liu, Y., Ren, H.M., Jin, X.W., Jiang, W.D., 2025. Mitigation of the toxic effects of nitrite: Role and mechanism of isoleucine in mitigating mitochondrial DNA leakage-induced inflammation in grass carp (*Ctenopharyngodon idella*) under nitrite exposure. J. Hazard. Mater., 491: 138016.

Sadiq, I.Z., 2023. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr. Mol. Med., 23(1): 13-35.

Saleem, N., Lashari, M.H., Ahmad, H.I., 2025. Orally administered organophosphorus dimethoate mediated biochemical alterations in male and female experimental *Rattus norvegicus* (albino rats). Sci. Rep., 15(1): 4371. <https://doi.org/10.1038/s41598-025-88023-2>

Sharma, C.D., Bansal, G., 2022. Malathion alters biochemical parameters of liver in albino rats. Indian J. Exp. Biol., 60(06): 438-441.

Sharma, C., Bansal, G., 2021. Enzymatic activity of liver and kidney altered by the different dose of organophosphate pesticide Malathion in albino rats. J. Entomol. Zool. Stud., 9: 187-191.

Singh, J., Phogat, A., Kumar, V., Malik, V. 2022. N-acetylcysteine ameliorates monocrotophos exposure-induced mitochondrial dysfunctions in rat

liver. *Toxicol. Mechan. Methods.*, 32(9): 686-694.

Singh, P.K., Tripathi, M., Garg, P., Singh, R.L., Pathak, N., Shukla, S., Singh, P., 2024. Enzymes and Their Clinical Applications. In *Clinical Applications of Biomolecules in Disease Diagnosis: A Comprehensive Guide to Biochemistry and Metabolism* (pp. 233-256). Singapore: Springer Nature Singapore.

Sule, R.O., Condon, L., Gomes, A.V., 2022. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. *Oxid. Med. Cell. Longev.*, (1): 5563759. <https://doi.org/10.1155/2022/5563759>

Sun, L., Yin, H., Liu, M., Xu, G., Zhou, X., Ge, P., Yang, H., Mao, Y., 2019. Impaired albumin function: a novel potential indicator for liver function damage? *Ann. Med.*, 51: 333–344. <https://doi.org/10.1080/07853890.2019.1693056>

Tang, F.H., Lenzen, M., McBratney, A., Maggi, F., 2021. Risk of pesticide pollution at the global scale. *Nat. Geosci.*, 14(4): 206-210. <https://doi.org/10.1038/s41561-021-00712-5>

Tichati, L., Trea, F., Ouali, K. (2020). Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. *Biol. Trace Elem. Res.*, 194(1): 228–236. <https://doi.org/10.1007/S12011-019-01773-9>

Tietz, N.W., 1976. Biuret method for the determination of total protein in serum In: Fundamental of clinical chemistry. WBS Saunders Co. Philadelphia, Toronto, London. p. 503 and p.879.

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Phung, D.T., 2021. Agriculture development, pesticide application and its impact on the environment. *Int. J. Environ. Res. Public Health.*, 18(3): 1112. <https://doi.org/10.3390/ijerph18031112>

Uwamahoro, C., Jo, J.H., Jang, S.I., Jung, E.J., Lee, W.J., Bae, J.W., Kwon, W.S., 2024. Assessing risks of pesticide exposure : implications for endocrine disruption and male fertility. *Int. J. Mol. Sci.* 25: 6945

Vaghari-Tabari, M., Jafari-Gharabaghloou, D., Sadeghsoltani, F., Hassanpour, P., Qujeq, D., Rashtchizadeh, N., Ghorbanihaghjo, A., 2021. Zinc and selenium in inflammatory bowel disease: trace elements with key roles?. *Biol. Trace Elem. Res.*, 199: 3190-3204. <https://doi.org/10.1007/s12011-020-02444-w>

Vishawanath, T., Sumana, S., Sharangouda, J., 2023. Application of Enzymes in Disease Diagnosis. In Editor & Editor B (Eds.), *Enzymes: Mechanisms and Action*, p.25. Academic Press.

Weir, S., 2021. Economic aspects of the qat industry in North-West Yemen. In *Economy, Society & Culture in Contemporary Yemen*. pp. 64-82.

Wisudanti, D.D., Hidayat, N., Jauhani, M.A., 2024. Long-Term Effects of Low-Dose Chlorpyrifos Exposure on Serum Albumin Levels in Male Wistar Rats. *J. Biomed. Transl. Res.*, 10(3): <https://doi.org/10.14710/jbtr.v10i3.22240>

Zhang, F., Li, X., Wei, Y., 2023. Selenium and selenoproteins in health. *Biomolecules*, 13(5): 799. <https://doi.org/10.3390/biom13050799>

Zhou, J., Nie, R.C., Yin, Y.X., Cai, X.X., Xie, D., Cai, M.Y., 2022. Protective effect of natural antioxidants on reducing Cisplatin-Induced nephrotoxicity. *Dis. Markers.*, 1612348. <https://doi.org/10.1155/2022/1612348>