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Abstract 
The contemporaneously produced alkaline protease and α-amylase by locally isolated Bacillus methylotrophicus SCJ4 had been 
purified in two steps and some characteristics of the purified enzymes were studied. Crude enzymes were first salted out using 
ammonium sulfate, then concentrated proteins were applied to anion column chromatography Q-sepharose (HiPrep Q FF 16/10 
column). The purified alkaline protease has an estimated molecular mass of 24 kDa with maximum enzyme activity (1185U/ml/min) 
at pH 9.0 and 55ºC. This enzyme belongs to serine proteases family with remarkable stability up to 62% and 61.5% toward Sodium 
Dodecyl Sulfate (SDS) and Hg

++
,
 
respectively. On the other hand, the purified amylase is a calcium-independent α-amylase, 

showing a good stability against SDS up to 73%. The estimated molecular mass was 67.5 kDa with maximum enzyme activity 
(280U/ml/min) at pH 7.0 and 65ºC. 
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INTRODUCTION 

Protease and amylase are among the most important 
industrial enzymes regarding to their application and 
marketing (Merheb et al., 2007; Kiran and Chandra, 2008). 
In application, both enzymes represent the main key in many 
industries including food, pharmaceuticals, and detergent 
industries (Hmidet et al., 2009) so their marketing 
represented about 60% for proteases (Rao et al., 1998) and 
about 25-30% for amylases (Rajagopalan and Krishnan, 
2008; Azad et al., 2009; Hmidet et al., 2010) from the total 
microbial enzyme sales. Many detergent industries imply the 
combined use of protease and amylase together in the same 
formulation (Maurer, 2004; Joo and Chang, 2006). Amylase 
exerts a synergetic effect on the washing capacity of the 
protease containing detergent and removes starchy food 
stains from fabrics which are difficult to remove under normal 
washing conditions (Hmidet et al., 2009). A major problem of 
using both enzymes together is proteolysis of amylase by 
protease. Therefore, using protease and amylase enzymes 

from the same strain will enhance the applicability of the 
detergent formulation. The co-production of the protease and 
amylase was reported in few studies (Hmidet et al., 2009; 
Correa et al., 2011; Kumar et al., 2013). 

The growing protease and amylase marketing entails an 
extensive search for new enzymes with higher activity and 
better characteristics. Exploring microorganisms from niches 
with high contamination levels as, El-Max bay, Egypt may 
represent a very promising source for enzymes that could 
meet the industrial demands. Enzymes could be used 
industrially in crude or purified preparations depend on the 
needed applications (Sundarram and Murthy, 2014). Crude 
enzymes preparations are generally used for commercial 
applications however, purified enzymes are essential for 
better understanding of its specific properties and functions 
(Nadeem et al., 2013). Many studies reported the increase in 
enzymes specific activities followed purification, which 
increase their industrial applications specificity (Kumar, 2002; 
Adinarayana et al., 2003). The individual production and 
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purification of protease or amylase enzymes from different 
Bacillus sp. have been reported extensively (Annamalai et 
al., 2014; Kamran et al., 2015; Ghafoori et al., 2016; Wang et 
al., 2016). However, only one report is available for 
purification and characterization of amylase form Bacillus 
methylotrophicus (Xie et al., 2014), but no such report for 
purification of protease from the same strain. The scope of 
this study is directed toward purification and understanding 
some characteristics of purified protease and amylase 
enzymes produced by Bacillus methylotrophicus SCJ4.   

                                                        

MATERIALS AND METHODS 

Microorganism  
The bacterial strain used through this work is Bacillus 

methylotrophicus SCJ4 which was isolated from El-Max bay, 
Egypt. The used strain was identified on the molecular level 
using 16S rRNA by Amer and Abde-Fattah, (Amer and 
Abdel-Fattah, 2014). This strain was selected among group 
of marine bacterial isolates based on its high production 
potency for both protease and amylase enzymes (El-Gendi 
et al., 2016). 
Enzymes production and preparation 

After cultivation of Bacillus methylotrophicus SCJ4 (ac: 
KF217257) on protease and amylase optimized production 
media as reported by El-Gendi et al., 2016, the cell free 
supernatant containing alkaline protease and α-amylase 
enzymes was used as a source of both enzymes in the 
following purification steps. 
Determination of enzymes activities 

Estimation of alkaline protease activity was carried out 
according to Anson, 1938 using bovine casein as substrate 
and standard curve of tyrosine. Determination of α-amylase 
activity was carried out based on Iodine-Starch color reaction 
of Fuwa’s colorimetric method (Fuwa, 1954). 
Determination of protein concentration 

Lowery method was applied to estimate the total protein 
contents using standard curve of bovine serum albumin 
(Lowery et al., 1951). 
Ammonium sulfate precipitation 

Crude protease and amylase in the cell free supernatant 
were slated out using ammonium sulfate, 65% saturation, 
and stirred over night at 4ºC. The precipitated proteins were 
recovered by centrifugation (12,000 rpm for 10 min. at 4ºC). 
The precipitate proteins were dissolved in minimum amount 
of 50mM glycine-NaOH buffer, pH 10.0 in case of protease 
purification. While for amylase purification, the precipitated 
proteins were dissolved in 50mM Tris-HCl buffer, pH 8.0. 
Proteins in the two different buffers were dialyzed overnight 
against the same buffer with four buffer changes using 
dialysis bag membrane with cut off of 10 kDa. The enzymes 
activity and protein concentrations were measured and 
specific activities were calculated. 

 
 

Separation of protease and amylase using anion-
exchange chromatography 

For protease purification the dialyzed proteins solution 
(5ml) was loaded into Q-sepharose column (HiPrep Q FF 
16/10, Pharmacia, Sweden) equilibrated with 50mM glycine-
NaOH pH 10.0 buffer using an automated ÄKTA Prime Plus 
system. To remove the unbound proteins, the column was 
washed with 5 column volumes of equilibration buffer. The 
column-bound proteins were eluted with a linear gradient (0- 
1M) NaCl in glycine-NaOH buffer, pH, 10.0 at a flow rate of 1 
ml/min and fraction size of 3ml. For amylase purification the 
same procedures were followed, with 50mM Tris-HCl buffer, 
pH 8.0. Fractions contained alkaline protease or amylase 
activities were pooled, desalted and concentrated by 
Amicon-10 ultrafiltration concentrator (membrane cut off of 
10 kDa). 
SDS-Polyacrylamide gel electrophoresis and 
zymography 

Different purification steps were evaluated through 12% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) performed as described by Laemmli, 1970. 
Blue-silver stain was applied to visualize the protein bands in 
SDS-PAGE according to Candiano et al., 2004. Spectra

TM
 

multicolor broad range protein ladder, (10-260 kDa) was 
used as molecular mass marker.  

Protease activity zymogram was conducted on SDS-
PAGE using a modified method of Garcia-Carreno et al., 
1993. Enzyme sample were not boiled before 
electrophoresis and after electrophoresis, the SDS-PAGE 
was incubated with 1% (w/v) casein in 50mM glycine–NaOH 
buffer (pH 10.0) for 30min at 50

◦
C. The appearance of clear 

zone after staining the gel with 0.25% Coomassie Brilliant 
Blue R250, indicated the protease activity. For amylase 
activity zymogram, after electrophoresis the gel was 
incubated in 1% soluble starch in 50mM phosphate buffer 
(pH 7.0) for 30 min at 60

◦
C. the gel was stained with I2 

solution (0.01% I2 in 0.1% KI), the appearance of clear zone 
indicated amylase activity. 
Characterization of purified enzymes 

Some characteristics of the purified protease and 
amylase were studied to evaluate optimum temperature and 
pH, thermal stability, pH stability, effect of some detergents, 
enzyme inhibitors, and some metal ions on both enzymes 
activity. 
Effect of temperature on activity of purified enzymes 

Effect of temperature on the activity of purified enzymes 
was assessed by incubating the reaction mixture at different 

temperature ranging from 30–80C in 50mM glycine-NaOH, 
pH 10.0, for purified protease and 50mM phosphate buffer, 
pH 7.0 for purified amylase. The enzymes activities were 
expressed in percentage relative activity considering the 
maximum value as 100%. 
Effect of temperature on stability of purified enzymes 

Temperature stability was estimated by incubating the 

purified enzymes at different temperature ranges (40-60C.) 

in case of protease and (50-70C.) in case of amylase. 

http://www.sciencedirect.com/science/article/pii/S1687157X15000074
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27116321


H. El-Gendi et al.                                                                                          PSM Biological Research 2016; 1(2): 88-95 
 

90 
  

Purified enzymes were incubated at each temperature for 
different time intervals from 0, 10, 20, 30, 40, 50 to 60 min. 
The enzyme activities were measured as described before 
and expressed in percent residual activity. 
Effect of pH on activity of purified enzymes 

Activity of the purified protease was measured at 
different pH (7.0-12.0). The reaction mixture pH was 
adjusted by dissolving 1% casein in one of the following 
buffers 50mM sodium phosphate (pH 6.0-7.0), 50mM Tris-
HCl (pH 8.0), 50mM glycine-NaOH (pH 9.0-10.0), 50mM 
sodium phosphate-NaOH (pH 11.0), and 50mM KCl-NaOH 
(pH 12.0). On the other hand, activity of the purified amylase 
was estimated at pH values of (4.0-10.0) by dissolving 1% 
soluble starch in one of the following buffers: 50mM citrate 
(pH 4.0- 5.0), 50mM sodium phosphate (pH 6.0-7.0), 50mM 
Tris-HCl (pH 8.0), 50mM glycine-NaOH (pH 9.0-10.0). The 
reaction mixture was incubated for 10 min at optimum 
temperature for each enzyme. The enzymes activity at 
different pH was determined as described earlier and 
expressed in percentage relative activity. 
Effect of pH on stability of purified enzymes 

Purified protease and amylase enzymes were incubated 
with one of the above-mentioned buffer at room temperature 
for 60 min. Samples were taken every 10 min interval where, 
the residual activity was determined at standard assay 
conditions. 
Effect of some detergent and enzymes inhibitors on 
activity of purified enzymes 

The effects of different surfactant as Triton X-100, 
Tween-80, Tween-20, SDS (0.1% and 0.5% final 
concentration), enzymes inhibitors including, 
phenylmethylsulphobnyl fluoride (PMSF) and 
ethylenediaminetetraacetic acid (EDTA) with final 

concentration of (1mM, 5mM) on enzymes activity were 
studied by pre-incubating the enzymes with each chemical 
for 15 min at room temperature. The residual activities were 
determined as mentioned before and compared to controls 
without any treating. 
Effect of some metal ions on activity of purified 
enzymes 

Activity of the purified enzymes was tested in presence 
of the following metal ions: Zinc sulfate, Iron sulfate, 
Magnesium sulfate, Copper sulfate, Cobalt chloride, 
Manganese chloride, Mercuric chloride and Calcium 
chloride. Purified enzymes were pre-incubated with each 
metal ion (5mM final concentration) for 15 min at room 
temperature. The residual activity was determined as 
mentioned before. The enzyme activity without any metal ion 
was taken as 100%. 

 

RESULTS AND DISCUSSION 

Protease and amylase purification 
The crude enzymes in the cell free supernatant were 

first salted out with ammonium sulfate 65% saturation. The 
results indicated an increase in the specific activity about 
9313.4 and 2046.12 (U/mg) for protease and amylase, 
respectively, compared to the cell free supernatant (Table 1). 
On one hand, the results indicated enhancement in both 
enzymes purification with ammonium sulfate to 5.53 and 
7.36 purification fold for protease and amylase, respectively 
(Table 1). Concentration of protease and amylase enzymes 
with ammonium sulfate was reported in many studies (Raul 
et al., 2014; Bekler et al., 2015).  

 

 
Table 1. Purification Scheme for Alkaline Protease and α-amylase produced by Bacillus methylotrophicus SCJ4. 

Step Total activity (U) Total protein 
(mg) 

Specific activity 
(U/mg) 

Purification fold Yield % 

Cell free 
supernatant 

Protease 363600 177 2054.237 1 100 
Amylase 60255.5 187.2 321.9 1 100 

Ammonium 
sulfate 

Protease 168240 14.8 11367.6 5.53 46.3 
Amylase 40730 17.2 2368.02 7.36 67.6 

Anion –
column 

Protease 2625 0.13 20192.31 9.83 0.72 
Amylase 1943 0.2 9715 30.1 3.22 

* One unit of protease activity was defined as the amount of enzyme that yields the equivalent of 1 μmol of tyrosine per 
minute under the assay conditions. Where, one unit of amylase activity was defined as the amount of enzyme decreased the 
absorbance of 660 nm by 0.1 in 10 min. 

 
In the next step, the dialyzed concentrated enzymes 

were applied to anion-exchange (HiPrep Q FF 16/10 
column), as an essential purification step. The alkaline 
protease was purified to 9.38 fold with increase in the 
specific activity 18138.1 U/mg, while in case of amylase, the 
purification fold and specific activity were increased by 30.18 
fold and 9715 (U/mg), respectively. Proteins purification after 
each step was evaluated through 12% SDS-PAGE. The 
results revealed improvement in purification for both 

enzymes indicated by reduction in proteins bands to a single 
protein band at molecular weight of 24 kDa for alkaline 
protease and 67.5 kDa for amylase (Figure 1). The usual 
molecular masses reported from genus Bacillus for protease 
between 15 and 38 kDa (Kumar and Takagi 1999; 
Doddapaneni et al., 2009), where in amylase were between 
22.5 kDa to 68 kDa (Gupta et al., 2003; Liu, et al., 2008). 
Gessesse et al., 2003, reported an alkaline protease with 
analogues molecular weight (24 kDa) from Bacillus 

https://www.google.com.eg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiutKSEyKfJAhUJWRQKHe1IB7wQFggfMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEthylenediaminetetraacetic_acid&usg=AFQjCNFcDRb2RuoFju_Oiw_hf4Zx4zoldA
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pseudofirmus. The purified amylase in this study has a 
higher molecular mass than that reported by Xie et al., 2014 
from Bacillus methylotrophicus P11-2 that estimated to be 
44.0 kDa, indicating a different amylase (Figure 1), purified 
protease and amylase showed a single clear band (each) of 
zymogram indicating pure preparations. 
 

 
Fig. 1. SDS-PAGE (12%) and Zymography of Purified 
Protease and Amylase Enzymes. Standard molecular 
mass marker (lane 1), cell free supernatant (lane 2), 
ammonium sulfate precipitated proteins (lane 3), 
purified α-amylase (lane 4), purified protease (lane 5), 
zymogram activity of purified amylase (lane 6) and 
zymogram activity for purified protease (lane 7). 
 
Characterization of the purified alkaline protease and 
amylase 
The effect of temperature on enzymes activity was studied 
by measuring the activity at different temperature values 

from 30-80C. The results (Figure 2) indicated an increase in 

protease activity with increase in temperature from 30-50C 

with an optimum activity at 55C. The activity was drastically 

affected with increase in temperature beyond 55C, losing 

about 80% from the total activity at 80C. Alkaline protease 
enzyme is generally known to has an optimum temperature 

range of 50-70C (Ellaiah et al., 2002). On the other hand, 
the purified α-amylase showed a higher activity compared to 
protease, where the total amylase activity was more than 

55% at 30C and 80C with an optimum activity at 

temperature range of 60-70C. This result is in accordance 
with Xie et al., 2014, who reported that the purified amylase 
from Bacillus methylotrophicus P11-2 showed an optimum 

temperature at 70C and pH 7.0. 
 
 
 
 
 

 
Fig. 2. Optimum Temperature for the Purified Alkaline 
Protease and α-amylase. 
 
Effect of temperature on stability of purified enzymes 
Thermal stability of protease and amylase enzymes was 
examined by incubating the purified enzymes at different 
temperature then the remaining activity was determined 
(Figure 3). The purified amylase showed higher thermal 
stability over the purified protease. Purified amylase was 

highly stable at temperature 50C and retained more than 

37% of its activity after 1h incubation at 60C, while purified 

protease retained 84% from its activity after 1h at 40C and 

21% after 10 minutes at 60C. purified amylase was 

completely inactivated at 70C after 20 minutes, however, 

purified protease lost its activity at 60C after 10 min. 
Effect of temperature on stability of purified enzymes 

Thermal stability of protease and amylase enzymes was 
examined by incubating the purified enzymes at different 
temperature then the remaining activity was determined 
(Figure 3). The purified amylase showed higher thermal 
stability over the purified protease. Purified amylase was 

highly stable at temperature 50C and retained more than 

37% of its activity after 1h incubation at 60C, while purified 

protease retained 84% from its activity after 1h at 40C and 

21% after 10 minutes at 60C. purified amylase was 

completely inactivated at 70C after 20 minutes, however, 

purified protease lost its activity at 60C after 10 min. 
Effect of pH on activity of purified enzymes 
Activity of the purified protease was measured at different pH 
values (7.0-12.0) (Figure 4). Protease enzyme was active 
over the entire tested pH range with a maximum activity at 
pH 9.0. Protease activity lost about 20% of total activity with 
increasing the pH values from 9.0 to 10.0. The same 
optimum pH had been reported by other investigators for 
alkaline protease from Bacillus sp (Annamalai et al., 2014; 
Badoei-Dalfard, 2015). The purified α-amylase showed a 
higher activity at acidic pH estimated to be 58% at pH 4.0 
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with optimum activity at pH 7.0. The results indicated a sharp 
decrease in the α-amylase activity in alkaline pH, about 40% 
loss in the total activity at pH 9.0. This finding is in 
accordance with many studies reported alpha amylase 
enzyme from Bacillus sp. with neutral pH optima, pH of 7.1 
by Raul et al., 2014 and pH of 6.0–7.5 by Abdel-Fattah et al., 
2013. Contrary to Annamalai et al., 2011 reported the 
optimum pH for amylase from Bacillus cereus in alkaline 
medium (pH 8.0) with 89% of its activity was sustained at pH 
11.0. 
 

 
Fig. 3. Effect of Temperature on Stability of the Purified 
Alkaline Protease and α-amylase. 
 
 

 
Fig. 4. Optimum pH for the Purified Alkaline Protease 
and α-amylase. 
 
 

Effect of pH on stability of purified enzymes 
Stability of purified protease was investigated at different pH 
values ranging from 7.0 to 11.0 (Figure 5). Purified protease 
showed a good stability in pH range of 7.0-10.0 with 
maximum stability at pH 8.0. Protease activity was gradually 
decreased at pH 11.0, where it completely inactivated after 
50 min of incubation at the same pH. On the other hand, 
purified amylase showed high stability in acidic to neutral pH 
ranges with a little decrease in the enzyme activity in alkaline 
medium (pH 9.0). Stability of amylase in acidic pH is a 
privilege to starch industries as the usual pH of starch slurry 
is generally around 4.5 (Sivaramakrishnan et al., 2006). 
 

 
Fig. 5. Effect of pH on the Stability of Purified Alkaline 
Protease and α-amylase. 
 
Effect of some detergents and inhibitors on activity of 
purified enzymes 
The effects of detergent on purified enzymes are varied 
(Table 2). Non-anionic detergents like Triton-X-100 slightly 
increased the activity of both enzymes, contrary to Tween-80 
that had a moderate negative effect on both enzymes. 
Tween-20 negatively affected the amylase activity, but 
showed no effect on protease. The strong ionic detergent 
SDS moderately affected both enzymes activity. At 0.5% 
SDS the estimated protease activity was 62%, where in 
amylase was 73%. Stability toward detergents is an 
important characteristic for industrial application of enzymes 
(Kumar and Takagi, 1999), particularly the SDS stable 
enzymes, which have been rarely reported (Hmidet et al., 
2009). The results of enzymes inhibitors indicated a 
remarkable stability for both enzymes toward EDTA, The 
stability of amylase from Bacillus methylotrophicus SCJ4 to 
EDTA, indicating non-metalloenzyme which is contradictory 
to Xie et al., 2014 reported 78% reduction in the amylase 
activity from Bacillus methylotrophicus P11-2 in presence of 
EDTA. Alkaline protease was drastically inactivated in 
presence of PSMF indicting a serine protease. Beg and 
Gupta, 2003 stated that, the adverse effect of PMSF on 
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protease enzymes is due to sulfonating the essential serine 
amino acids in the active site. 
 
Table 2. Effect of some Chemical Compounds on 
Activity of Purified Protease and Amylase. 

Compounds Final 
concentration 

Residual activity (%) 

Alkaline 
protease 

Amylase 

Control - 100 100 

Triton-X-100 0.1% 99 103.1 

0.5% 110 104.1 

Tween-80 0.1% 98 90.5 

0.5% 88 86.8 

Tween-20 0.1% 99 75.1 

0.5% 98 82.6 

SDS 0.1% 97 73.3 

0.5% 62 73.8 

EDTA 0.1% 100 100 

0.5% 98 99 

PMSF 0.1% 20 100 

0.5% 5 100 
 
Effect of some metal ions on activity of purified protease 
and amylase  

The effect of some metal ions on the enzymes activity 
was examined by measuring the activity in presence of 5mM 
of each metal ion (Figure 6).  

 

 
Fig. 6.  Effect of some Metal ions on Activity of Purified 
Alkaline Protease and α-amylase. 
 

The results indicated a good stability of both enzymes 
against most metals. Fe

++ 
and Hg

++ 
ions showed the most 

adverse effects on alkaline protease and amylase activity 
respectively. Inactivation of amylase with Hg

++
 was reported 

by other authors (Annamalai et al., 2011; Lin et al., 1998). 
The inhibition of alkaline protease activity by Fe

++ 
is in 

accordance with other studies Bhatiya and Jadeja, 2010 and 
Mokashe et al., 2015 and contrary to Badoei-Dalfard et al., 
2015 reported 40% increase in alkaline protease activity in 
presence of Fe

++
ion (5mM). The slight inactivation effect of 

metal ions on amylase activity, especially Ca
++ 

ion, indicated 
that this amylase is ions independent, required no metal for 
its activity. Our finding is in accordance with some other 
studies reported calcium independent amylase (Swain et al., 
2006; Carvalho  et al., 2008), contrary to most other studies 
confirming that α-amylases are metalloenzymes and Ca

++  

ions are essential for α-amylases stability and activity (Gupta  
et al., 2003; Burhan et al., 2003). 
 

CONCLUSION AND RECOMMENDATIONS   

The present work focused on two main key enzymes in 
many industries namely: alkaline protease and α-amylase 
which were produced by a local isolate Bacillus 
methylotrophicus SCJ4. Both enzymes were purified till unity 
then fully characterized. The two enzymes showed an 
interesting feature concerning thermal and pH- stabilities 
which make them good candidates in many industrial 
applications.  
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